首页> 外文OA文献 >On the application of the Theory of Critical Distances for prediction of fracture in fibre composites
【2h】

On the application of the Theory of Critical Distances for prediction of fracture in fibre composites

机译:临界距离理论在纤维复合材料断裂预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the fracture of composite materials containing stress concentrationfeatures such as notches and holes. In particular, it addresses the question of the use of the Theory of CriticalDistances (TCD) – a method which is widely used for predicting notch effects in fatigue and fracture. The TCDmakes use of a length constant, L, known as the critical distance, which is normally assumed to be a materialproperty. However, many workers in the field of composite materials have suggested that the critical distance isnot a constant, but rather is a function of notch size. I examined the evidence for this assertion, and concludedthat it arises for four different reasons, two of which (process zone size and constraint) are real material effectswhilst the other two (choice of test specimen and estimation of the stress field) arise due to errors in making theassessments. From a practical point of view, the assumption of a constant value for L leads to only small errors,so it is recommended for engineering design purposes.
机译:本文关注的是包含应力集中特征(如缺口和孔洞)的复合材料的断裂。特别是,它解决了临界距离理论(TCD)的使用问题-一种广泛用于预测疲劳和断裂中的缺口效应的方法。 TCD使用长度常数L(称为临界距离),通常假定其为材料属性。然而,复合材料领域的许多工人已经提出,临界距离不是恒定的,而是缺口尺寸的函数。我检查了该断言的证据,并得出结论,它的产生是由于四个不同的原因,其中两个(过程区大小和约束)是真实的材料影响,而其他两个(测试样本的选择和应力场的估计)则是由于误差引起的。在进行评估时。从实际的角度来看,假设L的值恒定只会导致很小的误差,因此建议将其用于工程设计。

著录项

  • 作者

    Taylor David;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号