首页> 外文OA文献 >Image processing and machine learning for fully automated probabilistic evaluation of medical images
【2h】

Image processing and machine learning for fully automated probabilistic evaluation of medical images

机译:图像处理和机器学习,可对医学图像进行全自动概率评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents results of our long-term study on using image processing and data mining methods in a medical imaging. Since evaluation of modern medical images is becoming increasingly complex, advanced analytical and decision support tools are involved in integration of partial diagnostic results. Such partial results, frequently obtained from tests with substantial imperfections, are integrated into ultimate diagnostic conclusion about the probability of disease for a given patient. We study various topics such as improving theudpredictive power of clinical tests by utilizing pre-test and post-test probabilities, texture representation, multi-resolution feature extraction, feature constructionudand data mining algorithms that significantly outperform medical practice. Our long-term study reveals three significant milestones. The first improvement was achieved by significantly increasing post-test diagnostic probabilities with respect to expert physicians. The second, even more significant improvement utilizes multi-resolution image parametrization. Machine learning methods in conjunction with the feature subset selection onudthese parameters significantly improve diagnostic performance. However, further feature construction with the principle component analysis on these features elevates results to an even higher accuracy level that represents theudthird milestone. With the proposed approach clinical results are significantly improved throughout the study. The most significant result of our study is improvement in the diagnostic power of the whole diagnostic process. Ourudcompound approach aids, but does not replace, the physician’s judgment and may assist in decisions on cost effectiveness of tests.
机译:本文介绍了我们在医学成像中使用图像处理和数据挖掘方法的长期研究结果。由于现代医学图像的评估变得越来越复杂,因此在部分诊断结果的集成中需要使用先进的分析和决策支持工具。通常从具有重大缺陷的测试中获得的部分结果被整合到有关给定患者患病可能性的最终诊断结论中。我们研究了各种主题,例如通过利用测试前和测试后的概率来提高临床测试的预测能力,纹理表示,多分辨率特征提取,特征构造 ud和数据挖掘算法,这些算法明显优于医学实践。我们的长期研究揭示了三个重要的里程碑。通过显着提高专家医生的测试后诊断概率,可以实现第一个改进。第二个甚至更重要的改进是利用多分辨率图像参数化。机器学习方法与这些参数的特征子集选择结合可显着提高诊断性能。但是,通过对这些特征进行主成分分析的进一步特征构造将结果提升到了更高的准确性水平,这代表了第三个里程碑。使用提议的方法,整个研究期间的临床结果均得到显着改善。我们研究的最重要结果是改善了整个诊断过程的诊断能力。我们的 udcompound方法有助于(但不能替代)医生的判断,并且可能有助于做出有关测试成本效益的决定。

著录项

  • 作者

    Šajn Luka; Kukar Matjaž;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号