首页> 外文期刊>Pattern Analysis and Applications >Medical imaging technique using curvelet transform and machine learning for the automated diagnosis of breast cancer from thermal image
【24h】

Medical imaging technique using curvelet transform and machine learning for the automated diagnosis of breast cancer from thermal image

机译:医学成像技术采用曲线变换和机器学习,用于热图像自动诊断乳腺癌

获取原文
获取原文并翻译 | 示例

摘要

Thermography is a useful imaging tool using infrared for the early diagnosis of breast cancer. Screening cancer aims to outstrip prognosis by seeing the precancerous stage to give a prominent prescription. Early diagnosis is essential to avoid the fatality rate in abnormal cases. In this article, a novel approach is proposed using image analysis and machine learning techniques. In the present work, thermal images were collected from the visual laboratory. In the pre-processing stage, the contrast of the image is improved by combining top-hat and bottom-hat transforms. The ROI extraction method is the preliminary process to select the right and left breast region and remove the neck and armpit region. Then, the imperfection in the structure of the image has been eliminated by using morphological operations. Statistical, geometrical, and intensity features are extracted from the pre-processed and segmented images. Texture features using a Gray-Level Co-Occurrence matrix are obtained both in the spatial domain and curvelet domain. The curvelet transform is used in the feature extraction stage, and this can be used to find an explanation of the curve discontinuity. The curvelet wrapping is applied, followed by the application of GLCM to extract texture features. In the proposed method, 16 features are used for the automated classification of input thermal images. Different machine learning techniques are explored, and the cubic SVM renders the highest accuracy of 93.3%. A combination of statistical, intensity, geometry features, and texture features extracted from curvelet coefficients provides the highest accuracy.
机译:热成像是一种使用红外线的有用的成像工具,用于早期诊断乳腺癌。筛查癌症旨在通过看到尖端阶段来突出预后,以给出突出的处方。早期诊断对于避免异常情况下的死亡率至关重要。在本文中,使用图像分析和机器学习技术提出了一种新的方法。在本作工作中,从视觉实验室收集热图像。在预处理阶段,通过组合顶帽和底帽变换来改善图像的对比度。 ROI提取方法是选择右侧和左乳房区域并移除颈部和腋窝区域的初步过程。然后,通过使用形态操作消除了图像结构的缺陷。从预处理和分段图像中提取统计,几何和强度特征。使用灰度级共发生矩阵的纹理特征在空间域和Curvelet域中获得。 Curvelet变换用于特征提取阶段,这可以用于找到曲线不连续的解释。应用曲线包装,然后应用GLCM提取纹理特征。在所提出的方法中,16个特征用于输入热图像的自动分类。探索了不同的机器学习技术,立方SVM呈现为93.3%的最高精度。从Curvelet系数提取的统计,强度,几何特征和纹理特征的组合提供了最高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号