首页> 外文OA文献 >Computer vision based sign language recognition
【2h】

Computer vision based sign language recognition

机译:基于计算机视觉的手语识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis focuses on methods designed to recognize signs of American manual alphabet on still images and video. The American manual alphabet was chosen due to the availability of material and properties of the alphabet itself (singlehanded and low amount of signs requiring movement). Methods are divided into two chapters.udThe first chapter describes methods based on feature extraction. The image is first segmented using color filters, then the features are extracted and converted into numerical form, and finally classification is performed. Classification is based on nearest neighbor search, which requires a metric to be defined so distance to neighboring examples can be calculated. The metric used is detailed in this chapter as well. udThe second chapter describes methods based on template matching. Unlike methods used in the previous chapter, templates are not represented in numerical form but rather as binary images. A set of templates is constructed using a group of training images. An input image is then compared to every template in the set and the best match is returned. We have developed three alterations of the algorithm, each having different classification accuracy and speed. udWe then focus on testing the speed and accuracy of the classification. Classification is tested using both still images and video. When testing is performed on video, certain problems occur, especially when capturing video in real-time using a web cam. Due to a generally lower quality of such capture, noise is introduced to the image, which severely affects classification accuracy. Certain methods are explored that help avoid the issue. udIn the final chapter we propose improvements that could be the focus of further research.
机译:本文重点研究旨在识别静止图像和视频上的美国手工字母符号的方法。选择美国手册字母表是因为该字母表本身具有足够的材料和属性(单手且需要移动的少量标志)。方法分为两章。 ud第一章介绍了基于特征提取的方法。首先使用滤色器对图像进行分割,然后提取特征并将其转换为数字形式,最后进行分类。分类基于最近邻居搜索,这需要定义度量标准,以便可以计算到邻近示例的距离。本章还详细介绍了所使用的度量。 ud第二章介绍了基于模板匹配的方法。与上一章中使用的方法不同,模板不是以数字形式表示的,而是二进制图像。使用一组训练图像构造一组模板。然后将输入图像与集合中的每个模板进行比较,并返回最佳匹配。我们已经开发了该算法的三种变更,每种变更具有不同的分类准确性和速度。 ud然后我们专注于测试分类的速度和准确性。分类使用静止图像和视频进行测试。对视频执行测试时,会出现某些问题,尤其是在使用网络摄像头实时捕获视频时。由于这种捕获的质量通常较低,因此噪声会引入到图像中,从而严重影响分类精度。探索了有助于避免该问题的某些方法。 ud在最后一章中,我们提出了可能成为进一步研究重点的改进。

著录项

  • 作者

    Kres Grega;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"sl","name":"Slovene","id":39}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号