首页> 外文OA文献 >General-purpose programming of graphical devices for machine learning
【2h】

General-purpose programming of graphical devices for machine learning

机译:用于机器学习的图形设备的通用编程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The needs of entertainment industry in the field of personal computers always require more realistic impressions of games. For this purpose manufacturers produce more powerful graphical devices, of which the compute capabilities have long overtaken central processing units (CPU). Such compute capabilities are achived through the capacity of many simple units, which do not contain good branching predictions, but better deal with the consequences through a huge number of active threads.udIn this diploma thesis I use the advantage of graphical devices for general-purpose programming for the needs of machine learning. The most important steps are the right choice of compute architecture and algorithm. I have chosen CUDA architecture, where I implemented backpropagation algorithm as a sampling method in an artificial neural networks area. In graphical device implementation I used several different optimization approaches to achieve more rapid execution.udThe purpose of thesis is to achieve as effective and fast concrete learning algorithm implementation on graphical device and thus to maximize speed up compared to the CPU implementation. At present-day fastest graphical devices I achieved more than 50-times speed up compared to the CPU implementation. ud
机译:个人计算机领域中娱乐业的需求始终需要对游戏有更真实的印象。为此,制造商生产了功能更强大的图形设备,其计算能力已长期超过了中央处理器(CPU)。这样的计算能力是通过许多简单单元的容量来实现的,这些单元不包含良好的分支预测,但可以通过大量活动线程更好地处理后果。 ud在本毕业论文中,我将图形设备的优势用于一般机器学习需求的通用编程。最重要的步骤是正确选择计算体系结构和算法。我选择了CUDA架构,在其中实现了反向传播算法作为人工神经网络领域的一种采样方法。在图形设备的实现中,我使用了几种不同的优化方法来实现更快的执行速度。 ud本文的目的是在图形设备上实现有效且快速的具体学习算法实现,从而与CPU实现相比最大程度地提高速度。在当今最快的图形设备上,与CPU实施相比,我的速度提高了50倍以上。 ud

著录项

  • 作者

    Grebenšek Blaž;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"sl","name":"Slovene","id":39}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号