首页> 外文OA文献 >Classifying ethernet data packets based on raw bit patterns
【2h】

Classifying ethernet data packets based on raw bit patterns

机译:根据原始位模式对以太网数据包进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently most operations on network data packets are controlled by the applicable protocols such as TCP/IP. However, there is scope to examine and classify the data without resorting to processing through a protocol stack. To do this, use can be made of the complex and sophisticated algorithms developed for the analysis of biological and genomics data. This makes use of similarities in the way information is stored in biological structures and network data traffic. It can be shown that network data flows have many of the same structural characteristics as biological DNA - areas of conservation (an area of data that has the same composition as an area in another packet of data will often have similar functionality), "motifs" with particular functions and the equivalent of "junk DNA" - areas where seemingly random changes occur. This paper looks at the novel application of algorithms designed to process DNA data to analyse and classify Ethernet network data packets based on the patterns discernible in the data rather than the more traditional method of matching fixed fields within the data based on protocol specifications. We are able to show that these algorithms are able to successfully and accurately classify packets of data into groups whose members have similar characteristics based on actual content rather than meta-data. This provides a unique and useful method of grouping and classifying packets that could be of use in diverse applications such as IDS systems, and the search for, and identification of specific types of data.
机译:当前,对网络数据包的大多数操作都由适用的协议(例如TCP / IP)控制。但是,可以检查和分类数据而无需借助协议栈进行处理。为此,可以利用为分析生物学和基因组数据而开发的复杂算法。这利用了信息在生物结构和网络数据流量中的存储方式的相似性。可以证明,网络数据流具有许多与生物DNA相同的结构特征-保护区域(与另一数据包中的区域组成相同的数据区域通常具有相似的功能),“基序”具有特定功能并相当于“垃圾DNA”的区域-看似随机变化的区域。本文着眼于算法的新颖应用,该算法旨在处理DNA数据,以基于数据中可识别的模式对以太网数据包进行分析和分类,而不是基于协议规范对数据中的固定字段进行匹配的传统方法。我们能够证明这些算法能够成功且准确地将数据包分类为组,这些组的成员具有基于实际内容而非元数据的相似特征。这提供了对分组进行分组和分类的独特且有用的方法,该方法可用于各种应用程序(例如IDS系统)以及特定类型数据的搜索和标识。

著录项

  • 作者

    Kenworthy W.D.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号