首页> 外文OA文献 >User Authentication Incorporating Feature Level Data Fusion of Multiple Biometric Characteristics
【2h】

User Authentication Incorporating Feature Level Data Fusion of Multiple Biometric Characteristics

机译:结合了多个生物特征的特征级别数据融合的用户身份验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This PhD research project developed and evaluated innovative approaches to computer system user authentication, using biometric characteristics. It involved experiments with a significant number of participants and development of new approaches to biometric data representation and analysis. ududThe initial authentication procedure, that we all perform when we log onto a computer system, is considered to be the first line of protection for computer systems. The password is the most common verification token used in initial authentication procedures. Unfortunately, passwords are subject to numerous attack vectors (loss, theft, guessing or cracking), and as a result unauthorised persons may gain access to the verification token and be incorrectly authenticated. This has led to password-based authentication procedures being responsible for a large proportion of computer network security breaches. ududIn recent years, the use of biometrics has been increasingly researched as an alternative to passwords in the initial authentication procedure. Biometrics concerns the physical traits and behavioural characteristics that make each individual unique. Biometric authentication involves the use of biometric technologies in authentication systems, with the aim to provide accurate verification (based on biometric characteristics). ududResearch has demonstrated that uni-modal biometric authentication (that is, authentication based on a single biometric characteristic) makes it difficult for an impostor to impersonate a legitimate user. More recent research is finding that multi-modal biometric authentication (that is, authentication based on the combination of multiple biometric characteristics) can make it even more difficult for an impostor to impersonate a legitimate user. Thus multi-modal biometrics claims improved accuracy and robustness. ududMulti-modal biometrics requires consideration of various aspects of data integration, known to the field of data fusion. Multi-modal biometric research has, until recently, focused on the fusion of data (from multiple sources) at the decision level or the confidence score level. It has been proposed that fusion of data at the feature level will produce more accurate and reliable verification. ududHowever, fusion of data at the feature level is a more difficult task than fusion at the other two levels. For decision level fusion, 'accept' or 'reject' results from the different data sources are fused. For confidence score level fusion, confidence scores (typically in the continuous interval [0, 1]) from the different data sources are fused. That is, for the aforementioned levels, the data from the multiple sources are of the same nature. Feature level fusion combines feature vectors, where the data from the different sources are most likely to consist of different units of measurement. ududData fusion literature formally specifies that data may be combined according to three paradigms: competitive, complementary, and cooperative. Competitive data fusion assesses data from all available sources, and bases classification upon the 'best' source. Complementary data fusion combines all available data from all sources, and bases classification upon this combined data. Cooperative data fusion involves the selection of the best features of each individual data source, and then combines the selected features prior to classification. ududThe objectives of the current study were to investigate the use of two individual biometric characteristics (keystroke dynamics and fingerprint recognition). For keystroke dynamics, feature selection was employed to reduce the variability associated with data from this characteristic. For fingerprint recognition, a new method was developed to represent fingerprint features. This was done to assist classification by Artificial Neural Networks, and to meet the requirement to facilitate fusion with the keystroke dynamics data at the feature level. ududWhilst feature level data fusion was the primary objective, investigation of the two individual characteristics was conducted to enable comparison of results with the data fusion results. For the data fusion investigation, the complementary and cooperative paradigms were adopted, with the cooperative approach involving four stages. ududThe feature selection method chosen to filter keystroke dynamics data was based on normality statistics, and returned results comparable to many other research efforts. The fingerprint feature representation method developed for this experiment demonstrated an innovative and effective technique, which could be applicable in a uni-modal or a multi-modal context. ududAs the new fingerprint representation method resulted in a standard length feature vector for each fingerprint, data alignment and subsequent feature level data fusion was efficiently and practicably facilitated. ududThe experiment recruited 90 participants to provide typing and fingerprint samples. Of these, 140 keystroke dynamics samples and 140 fingerprint samples (from each participant) were utilised for the first two phases of the experiment. Phase three of the experiment involved the fusion of the samples from the first two phases, and thus there were 140 combined samples. These quantities provided 100 samples for false negative testing and 10,500 samples for false positive testing (for each participant for each phase of the experiment). These figures are similar or better than virtually all previous research studies in this field. ududThe results of the three phases of the experiment were calculated as the two performance variables, the false rejection rate (FRR)-measuring the false negatives-and the false acceptance rate (FAR)-measuring the false positives. ududThe keystroke dynamics investigation returned an average FAR of 0.02766095 and an average FRR of 0.0862, which were• at least comparable with other research in the field. udThe fingerprint recognition investigation returned an average FAR of 0.0 and an average FRR of 0.0022, which were as good as (or better than) other research in the field. ududThe feature level data fusion adopting the complementary approach returned an average FAR of 0.0 and an average FRR of 0.0004. Feature level data fusion adopting the cooperative approach returned respective average FAR and FRR results of 0.00000381 and 0.0004 for stage 1, 0.0 and 0.0006 for stage 2, 0.0 and 0.001 for stage 3, and 0.0 and 0.001 for stage 4. ududThe research demonstrated that uni-modal biometric authentication systems provide an accurate alternative to traditional password-based authentication methods. Additionally, the keystroke dynamics investigation demonstrated that filtering 'noisy' data from raw data improved accuracy for this biometric characteristic (though other filtering methods than that used in this research may improve accuracy further). Also, the newly developed fingerprint representation method demonstrated excellent results, and indicated that its use for future research (in representing two dimensional data for classification by Artificial Neural Networks) could be advantageous. ududThe data fusion investigation demonstrated that multi-modal biometric authentication systems provide additional accuracy improvement (as well as a perceived robustness) compared to uni-modal biometric authentication systems. Feature level data fusion demonstrated improved accuracy compared with confidence score level and decision level data fusion methods. The new fingerprint representation method (which provided an innovative technique for representing data from any two dimensional data source) facilitated feature level data fusion with keystroke dynamic data, and the results validate the importance of using feature rich data.
机译:该博士研究项目利用生物特征开发并评估了计算机系统用户身份验证的创新方法。它涉及大量参与者的实验以及生物特征数据表示和分析的新方法的开发。 ud ud我们在登录计算机系统时都会执行的初始身份验证过程被认为是计算机系统的第一道保护线。密码是初始身份验证过程中最常用的验证令牌。不幸的是,密码容易受到多种攻击手段(丢失,盗窃,猜测或破解)的攻击,结果,未经授权的人员可能会访问验证令牌并被错误地认证。这导致基于密码的身份验证过程导致很大一部分计算机网络安全漏洞。 ud ud近年来,越来越多地研究使用生物识别技术来代替初始身份验证过程中的密码。生物识别技术关注使每个人都独一无二的身体特征和行为特征。生物特征认证涉及在认证系统中使用生物特征技术,目的是提供准确的验证(基于生物特征)。 ud ud研究表明,单模式生物特征认证(即基于单个生物特征的认证)使冒名顶替者难以模仿合法用户。最近的研究发现,多模式生物特征认证(即基于多个生物特征的组合的认证)会使冒名顶替者冒充合法用户更加困难。因此,多模式生物识别技术要求提高准确性和鲁棒性。 ud ud多峰生物识别技术需要考虑数据融合领域中已知的数据集成的各个方面。直到最近,多模式生物识别研究一直专注于决策级别或置信度得分级别的数据融合(来自多个来源)。已经提出,在特征级别上的数据融合将产生更准确和可靠的验证。 ud ud但是,与其他两个级别的融合相比,功能级别的数据融合更困难。对于决策级融合,融合来自不同数据源的“接受”或“拒绝”结果。对于置信度得分级别融合,融合来自不同数据源的置信度得分(通常在连续间隔[0,1]中)。也就是说,对于上述级别,来自多个源的数据具有相同的性质。特征级融合结合了特征向量,其中来自不同来源的数据最有可能包含不同的度量单位。 ud ud数据融合文献正式规定可以根据以下三种范式对数据进行组合:竞争,互补和合作。竞争性数据融合会评估来自所有可用来源的数据,并基于“最佳”来源进行分类。补充数据融合合并了所有来源的所有可用数据,并基于此合并数据进行分类。协作数据融合涉及选择每个单独数据源的最佳功能,然后在分类之前合并所选的功能。 ud ud当前研究的目的是研究两个生物特征的使用(击键动态和指纹识别)。对于击键动力学,采用了特征选择来减少与此特征相关的数据的可变性。对于指纹识别,开发了一种新的方法来表示指纹特征。这样做是为了辅助人工神经网络进行分类,并满足在特征级别促进与击键动态数据融合的要求。 ud ud,虽然特征级别的数据融合是主要目标,但对两个单独的特征进行了研究,以便将结果与数据融合结果进行比较。在数据融合研究中,采用了互补和合作范式,合作方式涉及四个阶段。 ud ud选择用于筛选击键动态数据的特征选择方法是基于正态统计,并且返回的结果可与许多其他研究工作相媲美。为此实验开发的指纹特征表示方法展示了一种创新且有效的技术,该技术可以应用于单模式或多模式环境。 ud ud由于新的指纹表示方法导致每个指纹的标准长度特征向量,数据对齐和后续功能级别的数据融合得到了有效而实用的促进。 ud ud实验招募了90名参与者,以提供打字和指纹样本。其中,140个击键动态样本和140个指纹样本(来自每个参与者)被用于实验的前两个阶段。实验的第三阶段涉及前两个阶段的样本融合,因此有140个合并样本。这些数量提供了100个用于假阴性测试的样本和10,500个用于假阳性测试的样本(针对实验的每个阶段的每个参与者)。这些数字实际上比该领域以前的所有研究都相似或更好。 ud ud将实验的三个阶段的结果计算为两个性能变量,即误剔除率(FRR)-测量误报-和误接受率(FAR)-测量误报。按键动力学研究得出的平均FAR为0.02766095,平均FRR为0.0862,至少与该领域的其他研究相当。指纹识别研究得出的平均FAR为0.0,平均FRR为0.0022,与该领域的其他研究一样好(或更好)。 ud ud采用补充方法的特征级数据融合返回的平均FAR为0.0,平均FRR为0.0004。采用协作方法的特征级数据融合分别返回第1阶段0.00000381和0.0004的平均FAR和FRR结果,第2阶段0.0和0.0006,第3阶段0.0和0.001,第4阶段0.0和0.001。证明了单模式生物特征认证系统提供了传统的基于密码的认证方法的准确替代方案。此外,击键动力学研究表明,从原始数据中过滤“嘈杂”数据可提高此生物特征的准确性(尽管本研究中使用的其他过滤方法可能会进一步提高准确性)。另外,新开发的指纹表示方法显示出优异的效果,并表明其在将来的研究中(在表示二维数据以通过人工神经网络进行分类中)可能是有利的。 ud ud数据融合调查表明,与单模式生物特征认证系统相比,多模式生物特征认证系统提供了更多的准确性(以及感知的鲁棒性)。与置信度得分级别和决策级别的数据融合方法相比,特征级别的数据融合证明了更高的准确性。新的指纹表示方法(提供了一种创新的技术来表示来自任何二维数据源的数据)促进了特征级数据与按键动态数据的融合,并且结果验证了使用功能丰富的数据的重要性。

著录项

  • 作者

    Abernethy Mark;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号