首页> 外文OA文献 >Study of different mobility models and clustering algorithms like weighted clustering algorithm (WCA) and dynamic moblity adaptive clustering algorithm (DMAC)udud
【2h】

Study of different mobility models and clustering algorithms like weighted clustering algorithm (WCA) and dynamic moblity adaptive clustering algorithm (DMAC)udud

机译:研究不同的移动性模型和聚类算法,例如加权聚类算法(WCA)和动态移动性自适应聚类算法(DMAC) ud ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This project addresses issues pertaining to mobile multi-hop radio networks called mobile ad hoc networks (MANET), which plays a critical role in places where a wired backbone is neither available nor economical to deploy. Our objective was to form and maintain clusters for efficient routing, scalability and energy utilization. To map the cellular architecture into the mobile ad hoc network cluster heads are elected that form the virtual backbone for packet transmission. However, the constant movement of the nodes changes the topology of the network, which perturbs the transmission. This demands the cluster maintenance. Weighed Clustering Algorithm (WCA)[4] and Distributed and Mobility adaptive Clustering (DMAC) [1,2,3] are two better proven algorithms on which we have implemented different mobility models like Random Walk (RW), Random Way Point (RWP) and Random Direction (RD). In both the algorithms each node is assigned some weight .In WCA the weight is a function of parameters like Battery power, mobility, transmission range and degree of connectivity. DMAC is mobility adaptive, i.e. it takes the mobility of the nodes into consideration while forming the clusters. We have chosen some measuring parameters like no of clusterheads, Average cluster lifetime, and Reaffilation rate for comparing the performance of both the algorithms.
机译:该项目解决了与称为移动自组织网络(MANET)的移动多跳无线网络有关的问题,该网络在有线骨干网既不可用也不经济地部署的地方起着至关重要的作用。我们的目标是形成和维护集群,以实现高效的路由,可伸缩性和能源利用。为了将蜂窝体系结构映射到移动自组织网络中,选择簇头,簇头形成用于分组传输的虚拟主干。但是,节点的不断移动会改变网络的拓扑结构,从而干扰传输。这需要集群维护。加权聚类算法(WCA)[4]和分布式和移动性自适应聚类(DMAC)[1,2,3]是两个更好证明的算法,在这些算法上我们实现了不同的移动性模型,例如随机游走(RW),随机路径点(RWP) )和随机方向(RD)。在这两种算法中,每个节点都分配有一定的权重。在WCA中,权重是诸如电池电量,移动性,传输范围和连接度等参数的函数。 DMAC是移动性自适应的,即,在形成群集时,它会考虑节点的移动性。我们选择了一些测量参数,例如簇头数,平均簇寿命和重新分配率,以比较两种算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号