首页> 外文OA文献 >Effort estimation for object-oriented system using artificial intelligence techniques
【2h】

Effort estimation for object-oriented system using artificial intelligence techniques

机译:使用人工智能技术的面向对象系统的工作量估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Software effort estimation is a vital task in software engineering. The importance of effort estimation becomes critical during early stage of the software life cycle when the details of the software have not been revealed yet. The effort involved in developing a software product plays an important role in determining the success or failure. With the proliferation of software projects and the heterogeneity in their genre, there is a need for efficient effort estimation techniques to enable the project managers to perform proper planning of the Software Life Cycle activates. In the context of developing software using object-oriented methodologies, traditional methods and metrics were extended to help managers in effort estimation activity. There are basically some points approach, which are available for software effort estimation such as Function Point, Use Case Point, Class Point, Object Point, etc. In this thesis, the main goal is to estimate the effort of various software projects using Class Point Approach. The parameters are optimized using various artificial intelligence (AI) techniques such as Multi-Layer Perceptron (MLP), K-Nearest Neighbor Regression (KNN) and Radial Basis Function Network(RBFN), fuzzy logic with various clustering algorithms such as the Fuzzy C-means (FCM) algorithm, K-means clustering algorithm and Subtractive Clustering (SC) algorithm, such as to achieve better accuracy. Furthermore, a comparative analysis of software effort estimation using these various AI techniques has been provided. By estimating the software projects accurately, we can have software with acceptable quality within budget and on planned schedules.
机译:软件工作量估算是软件工程中的重要任务。在软件生命周期的早期阶段,当尚未透露软件详细信息时,工作量估算的重要性就变得至关重要。开发软件产品所涉及的工作在确定成功或失败中起着重要作用。随着软件项目的激增及其种类的多样性,需要有效的工作量估算技术,以使项目经理能够对软件生命周期激活进行适当的计划。在使用面向对象的方法开发软件的背景下,传统的方法和指标得到了扩展,以帮助管理人员进行工作量估算活动。基本上有一些点方法可以用于软件工作量估计,例如功能点,用例点,类点,对象点等。在本文中,主要目标是使用类点估计各种软件项目的工作量方法。使用多种人工智能(AI)技术优化参数,例如多层感知器(MLP),K最近邻回归(KNN)和径向基函数网络(RBFN),具有各种聚类算法(例如Fuzzy C)的模糊逻辑-均值(FCM)算法,K-均值聚类算法和减法聚类(SC)算法,以达到更好的准确性。此外,已经提供了使用这些各种AI技术进行软件工作量估算的比较分析。通过准确地估计软件项目,我们可以在预算范围内和按计划的时间表中获得质量合格的软件。

著录项

  • 作者

    Kumar Mukesh;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号