首页> 外文OA文献 >Privacy Preserving Clustering In Data Mining
【2h】

Privacy Preserving Clustering In Data Mining

机译:数据挖掘中的隐私保护聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Huge volume of detailed personal data is regularly collected and sharing of these data is proved to be beneficial for data mining application. Such data include shopping habits, criminal records, medical history, credit records etc .On one hand such data is an important asset to business organization and governments for decision making by analyzing it .On the other hand privacy regulations and other privacy concerns may prevent data owners from sharing information for data analysis. In order to share data while preserving privacy data owner must come up with a solution which achieves the dual goal of privacy preservation as well as accurate clustering result. Trying to give solution for this we implemented vector quantization approach piecewise on the datasets which segmentize each row of datasets and quantization approach is performed on each segment using K means which later are again united to form a transformed data set. Some experimental results are presented which tries to finds the optimum value of segment size and quantization parameter which gives optimum in the tradeoff between clustering utility and data privacy in the input dataset.
机译:定期收集大量详细的个人数据,并证明了这些数据的共享对于数据挖掘应用程序是有益的。这些数据包括购物习惯,犯罪记录,病历,信用记录等。一方面,这些数据是商业组织和政府通过分析做出决策的重要资产。另一方面,隐私法规和其他隐私问题可能会阻止数据所有者共享信息进行数据分析。为了在保护隐私的同时共享数据,数据所有者必须提出一种解决方案,该方案可以实现隐私保护的双重目标以及准确的聚类结果。为了给出解决方案,我们在数据集上分段实现了矢量量化方法,该方法将数据集的每一行进行了细分,并使用K均值对每个段执行了量化方法,随后又将其组合在一起以形成转换后的数据集。提出了一些实验结果,试图找到段大小和量化参数的最佳值,从而在输入数据集的聚类效用和数据隐私之间进行权衡。

著录项

  • 作者

    Sinha B K; Kumar J;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号