首页> 外文OA文献 >In-silico screening of potential inhibitors of gamma-secretase, a key enzyme of Alzheimer’s disease
【2h】

In-silico screening of potential inhibitors of gamma-secretase, a key enzyme of Alzheimer’s disease

机译:电子筛选潜在的γ-分泌酶抑制剂(一种阿尔茨海默氏病的关键酶)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gamma-secretase is a trans-membrane aspartyl protease that consists of four subunits, namely Anterior Pharynx Defective Phenotype (APH-1), Presenilin (PSEN), Nicastrin (Nct) and Presenilin 2 Enhancer (PEN2). Presenilin is identified as the catalytic core of ã-secretase with the two aspartyl residues at the catalytic site. ã-secretase is involved in the ultimate step in the processing of Amyloid Precursor Protein (APP) to yield Amyloid Beta peptide (Aâ). Aâ of various residue lengths is formed that includes the toxic Aâ42. Aggregation of Aâ42 has been identified to contribute to etiology of Alzheimer’s disease (AD). Inhibition of processing of APP by ã-secretase is a possible intervention strategy for the therapy for AD. Various studies carried out to find inhibitors for ã-secretase have populated two classes of compounds, ã-secretase Inhibitors and ã-secretase Modulators. Despite these efforts there is a dearth of an effective therapy for AD. This study aimed to find potential inhibitors of ã-secretase using in-silico screening of DrugBank database. A total of 10 Pharmacophore models were developed from 54 molecules shown to inhibit ã-secretase. The pharmacophore models were used as 3D query in database screening of 6160 drug molecules selected from DrugBank. The list of hits that resulted from the database screening using all the 10 pharmacophore models was compacted to yield 721 unique entries with a fit score over 3.00 on a scale of 4.00 against the pharmacophore model. A QSAR model was developed employing multiple linear regression to calculate the predicted IC50 value for the 721 molecules from screening using pharmacophore models. Docking study was done to calculate the binding energy for 498 molecules with predicted IC50 value under 10000nM. 55 molecules with binding energy, ∆G, lesser than –8.00 kcal/mol are presented as potential inhibitors of ã-secretase. Thus, this data can be used for further studies for the development of therapy for Alzheimer’s disease.
机译:γ-分泌酶是一种跨膜天冬氨酰蛋白酶,由四个亚基组成,分别是前咽缺陷表型(APH-1),早老素(PSEN),尼卡斯汀(Nct)和早老素2增强剂(PEN2)。早老素被鉴定为α-分泌酶的催化核心,在催化位点具有两个天冬氨酰残基。分泌酶参与淀粉样前体蛋白(APP)加工产生淀粉样β肽(Aâ)的最终步骤。形成各种残基长度的Aâ,其中包括有毒的Aâ42。已确定Aâ42的聚集与阿尔茨海默氏病(AD)的病因有关。分泌酶抑制APP的加工是AD治疗的可能干预策略。为找到α-分泌酶抑制剂而进行的各种研究已经建立了两类化合物,α-分泌酶抑制剂和α-分泌酶调节剂。尽管做出了这些努力,但仍缺乏有效的AD治疗方法。本研究旨在通过计算机筛选DrugBank数据库来寻找α分泌酶的潜在抑制剂。从54种抑制secretase的分子开发了10个Pharmacophore模型。药效团模型被用作3D查询,以筛选选自DrugBank的6160种药物分子。使用所有10个药效团模型对数据库筛选产生的命中列表进行了压缩,以产生721个唯一条目,相对于药效团模型,其拟合得分在3.00以上,且得分为4.00。使用多元线性回归开发了QSAR模型,通过使用药效团模型进行筛选来计算721分子的预测IC50值。进行了对接研究以计算498n分子在10000nM以下的结合能。结合能∆G小于–8.00 kcal / mol的55个分子被认为是分泌酶的潜在抑制剂。因此,该数据可用于进一步研究阿尔茨海默氏病的治疗方法。

著录项

  • 作者

    E V R Arun;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号