首页> 外文OA文献 >Offline signature verification scheme using feature extraction methodud
【2h】

Offline signature verification scheme using feature extraction methodud

机译:使用特征提取方法的脱机签名验证方案 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this project a new improved offline signature verification scheme has been proposed. The scheme is based on selecting 60 feature points from the geometric centre of the signature and compares them with the already trained feature points. The classification of the feature points utilizes statistical parameters like mean and variance. The suggested scheme discriminates between two types of originals and forged signatures. The method takes care of skill, simple and random forgeries. The objective of the work is to reduce the two vital parameters False Acceptance Rate (FAR) and False Rejection Rate (FRR) normally used in any signature verification scheme. Comparative analysis has been made with standard existing schemes. The Algorithms are based on the Geometric Center of an image so images are splitted into different parts to get the geometric centers of each which are called as Feature points in our thesis. We have taken 60(30+30) Feature points for calculation purpose(in extended Algorithm). As Feature points increases results will be more accurate but complexity and time require for testing will be more. So we have taken 60 feature points which improves security and maintains same complexity level. All calculations are done on the basis of these feature points. Results are expressed in terms of FAR (False Acceptance Rate) and FRR (False Rejection Rate) and subsequently compare these results with other existing Techniques. Results obtained by this algorithm are quite impressive. Random and Simple forgeries are eliminated and skilled forgeries are also eliminated in greater extent. As signature image is tested rigorously so FRR is more in the Algorithm proposed by us.
机译:在该项目中,提出了一种新的改进的离线签名验证方案。该方案基于从签名的几何中心选择60个特征点,并将它们与已经训练好的特征点进行比较。特征点的分类利用诸如均值和方差之类的统计参数。建议的方案区分两种类型的原件和伪造签名。该方法需要技巧,简单和随机的伪造。这项工作的目的是减少通常在任何签名验证方案中使用的两个重要参数:错误接受率(FAR)和错误拒绝率(FRR)。使用标准的现有方案进行了比较分析。该算法基于图像的几何中心,因此图像被分为不同的部分以获取每个图像的几何中心,在我们的论文中称为特征点。我们已将60(30 + 30)个特征点用于计算目的(在扩展算法中)。随着功能点的增加,结果将更加准确,但测试所需的复杂性和时间将更多。因此,我们采用了60个特征点来提高安全性并保持相同的复杂度。所有计算都是基于这些特征点进行的。结果以FAR(错误接受率)和FRR(错误拒绝率)表示,随后将这些结果与其他现有技术进行比较。通过该算法获得的结果令人印象深刻。消除了随机伪造和简单伪造,还更大程度地消除了熟练的伪造。由于签名图像经过严格测试,因此FRR在我们提出的算法中更多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号