首页> 外文OA文献 >Design of plant layout having passages and inner structural wall using particle swarm optimization
【2h】

Design of plant layout having passages and inner structural wall using particle swarm optimization

机译:利用粒子群算法设计具有通道和内部结构墙的工厂布局

摘要

The FLP has applications in both manufacturing and the service industry. The FLP is a common industrial problem of allocating facilities to either maximize adjacency requirement or minimize the cost of transporting materials between them. The “maximizing adjacency” objective uses a relationship chart that qualitatively specifies a closeness rating for each facility pair. This is then used to determine an overall adjacency measure for a given layout. The “minimizing of transportation cost” objective uses a value that is calculated by multiplying together the flow, distance, and unit transportation cost per distance for each facility pair. The resulting values for all facility pairs are then added. Most of the published research work for facilities layout design deals with equal-area facilities. By disregarding the actual shapes and sizes of the facilities, the problem is generally formulated as a quadratic assignment problem (QAP) of assigning equal area facilities to discrete locations on a grid with the objective of minimizing a given cost function. Heuristic techniques such as simulated annealing, simulated evolution, and various genetic algorithms developed for this purpose have also been applied for layout optimization of unequal area facilities by first subdividing the area of each facility in a number of “unit cells”. The particle swarm optimization(PSO) technique has developed by Eberhart and Kennedy in 1995 and it is a simple evolutionary algorithm, which differs from other evolutionary computation techniques in that it is motivated from the simulation of social behavior. PSO exhibits good performance in finding solutions to static optimization problems. Particle swarm optimization is a swarm intelligence method that roughly models the social behavior of swarms. PSO is characterized by its simplicity and straightforward applicability, and it has proved to be efficient on a plethora of problems in science and engineering. Several studies have been recently performed with PSO on multi objective optimization problems, and new variants of the method, which are more suitable for such problems, have been developed. PSO has been recognized as an evolutionary computation technique and has features of both genetic algorithms (GA) and Evolution strategies (ES). It is similar to a GA in that the System is initialized with a population of random solutions. However, unlike a GA each population individual is also assigned a randomized velocity, in effect, flying them through the solution hyperspace. As is obvious, it is possible to simultaneously search for an optimum solution in multiple dimensions. In this project we have utilized the advantages of the PSO algorithm and the results are compared with the existing GA. Need Statement of Thesis: To Find the best facility Layout or to determine the best sequence and area of facilities to be allocated and location of passages for minimum material handling cost using particle swarm optimization and taking a case study. The criteria for the optimization are minimum material cost and adjacency ratios. udMinimize F = ∑∑ . ……………………………………………... (1)ud= =udMudiudMudjudijudfudijuddud1 1ud*ud g1= αiudminud – αi ≤ 0,………………………………………………………… (2) ud g2= αiud - αiudmaxud ≤ 0, ……………………………………………………… (3) ud g3= aiudminud – ai ≤ 0,…………………………………………………………. (4) ud g4= ∑ - Aud=udMudiudaiud1udavailable ≤ 0,…………………………………………………... (5) ud g5= αiudminud – αi ≤ 0,………………………………………………………… (6) ud g6= αiudminud – αi ≤ 0,………………………………………………………… (7) ud g7 = (xiudrud - xiudi.s.wud) (xiudiud.uds.wud - xiudlud) ≤ 0,…………………………………………... (8) ud Where i, j= 1, 2, 3…….M, S= 1, 2, 3…P ud fijud : Material flow between the facility i and j, ud dijud : Distance between centroids of the facility i and j, ud M: Number of the facilities, ud αiud : Aspect ratio of the facility i, ud αiudmin udand αiudmaxud : Lower and upper bounds of the aspect ratio αiud ud ai :ud Assigned area of the facility i, ud aiudmin ud and aiudmaxud : Lower and upper bounds of the assigned area ai ud Aavailable : Available area,ud P: Number of the inner structure walls,udSince large number of different combination are possible, so we can’t interpret each to find the best one. For this we have used particle swarm optimization Techniques. The way we have used is different way of PSO. The most interesting facts that the program in C that we has been made is its “Generalized form”. In this generalized form we can find out the optimum layout configuration by varying: udƒDifferent area of layout udƒTotal number of facilitates to be allocated. udNumber of rows udNumber of facilities in each row udArea of each Facility udƒDimension of each passage udNow we have compared it with some other heuristic method like Genetic algorithm, simulated annealing and tried to include Maximum adjacency criteria and taking a case study.
机译:FLP在制造业和服务业中都有应用。 FLP是分配设施以最大化邻接要求或最小化在它们之间运输物料的成本的常见工业问题。 “最大邻接度”目标使用关系图,该关系图定性地指定每个设施对的接近度等级。然后将其用于确定给定布局的总体邻接度量。 “最小化运输成本”目标使用的值是通过将每个设施对的流量,距离和每距离的单位运输成本相乘得出的。然后将所有设施对的结果值相加。设施布局设计的大部分已发表的研究工作都涉及等面积的设施。通过忽略设施的实际形状和大小,该问题通常表述为二次分配问题(QAP),该问题将等面积设施分配给网格上的离散位置,目的是使给定的成本函数最小。通过首先将每个设施的面积划分为多个“单位单元”,启发式技术(例如模拟退火,模拟进化和为此目的开发的各种遗传算法)也已用于不等面积设施的布局优化。粒子群优化(PSO)技术是Eberhart和Kennedy于1995年开发的,它是一种简单的进化算法,与其他进化计算技术的不同之处在于它是基于对社会行为的模拟而产生的。 PSO在寻找静态优化问题的解决方案方面表现出良好的性能。粒子群优化是一种群智能方法,可以大致模拟群的社会行为。 PSO具有简单性和直接适用性的特点,并且已证明在解决科学和工程学中的许多问题上都是有效的。最近用PSO对多目标优化问题进行了一些研究,并且已经开发出了更适合此类问题的方法的新变体。 PSO被认为是一种进化计算技术,具有遗传算法(GA)和进化策略(ES)的特征。它与GA相似,因为系统是使用大量随机解进行初始化的。但是,与遗传算法不同,每个种群个体也被分配了一个随机速度,实际上是使它们飞过求解超空间。显而易见,可以同时在多个维度上搜索最佳解决方案。在本项目中,我们利用了PSO算法的优势,并将结果与​​现有GA进行了比较。论文的需求陈述:使用粒子群优化和案例研究,找到最佳的设施布局或确定要分配的设施的最佳顺序和区域以及通道的位置,以最小化物料搬运成本。优化的标准是最小的材料成本和邻接率。 ud最小化F = ∑∑。 ……………………………………………(1) ud = = udM udi udM udj udij udf udij udd ud1 1 ud * ud g1 =αi udmin ud –αi≤0,………………………………………………(2) ud g2 =αi ud-αi udmax ud≤0,………………………………………………(3) ud g3 = ai udmin ud – ai≤0,…………………… ……………………………………。 (4) ud g4 = ∑-A ud = udM udi udai ud1 udavailable≤0,...…………………………………………(5 ) ud g5 =αi udmin ud –αi≤0,……………………………………………………(6) ud g6 =αi udmin ud – αi≤0,..........................................(7) ud g7 =(xi udr ud-xi udi.sw ud)(xi udi ud。 uds.w ud-xi udl ud)≤0,…………………………………………...(8) ud其中i,j = 1,2,3…….M,S = 1,2,3…P ud fij ud:设施i和j之间的物料流, ud dij ud:设施i和j的质心之间的距离, ud M:设施的数量, udαi ud:设施i的长宽比, udαi udmin ud和αi udmax ud:长宽比αi ud ud ai的上下限: ud设施i的分配区域, ud ai udmin ud和ai udmax ud:分配区域ai ud的上下限可用:可用区域, ud P:内部结构墙的数量, ud由于可以使用大量不同的组合,因此我们无法解释每种组合以找到最佳组合。为此,我们使用了粒子群优化技术。我们使用的方式与PSO的方式不同。我们用C语言编写的程序中最有趣的事实是它的“广义形式”。通过这种通用形式,我们可以通过以下方式找到最佳的布局配置:udƒ布局的不同区域udƒ要分配的便利总数。 ud行数 ud每行中的设施数 ud每个设施的面积udƒ每个通道的尺寸 ud现在我们已将其与其他启发式方法(如遗传算法)进行了比较,模拟退火并尝试包括最大邻接标准并进行案例研究。

著录项

  • 作者

    Kumar Shiv Ranjan;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号