首页> 外文OA文献 >Wavelet Signal Processing of Physiologic Waveforms
【2h】

Wavelet Signal Processing of Physiologic Waveforms

机译:生理波形的小波信号处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The prime objective of this piece of work is to devise novel techniques for computer udbased classification of Electrocardiogram (ECG) arrhythmias with a focus on less computational time and better accuracy. As an initial stride in this direction, ECG beat classification is achieved by using feature extracting techniques to make a neural network (NN) system more effective. The feature extraction technique used is Wavelet Signal Processing. Coefficients from the discrete wavelet transform were used to represent the ECG diagnostic information and features were extracted using the coefficients and were normalised. These feature sets were then used in the classifier i.e. a simple feed forward back propagation neural network (FFBNN). This paper presents a detail study of the classification accuracy of ECG signal by using these four structures for computationally efficient early diagnosis. Neural network used in this study is a well-known neural network architecture named as multi-Layered perceptron (MLP) with back propagation training algorithm. The ECG signals have been taken from MIT-BIH ECG database, and are used in training to classify 3 different Arrhythmias out of ten arrhythmias. These are normal sinus rhythm, paced beat, left bundle branch block. Before testing, the proposed structures are trained by back propagation algorithm. The results show that the wavelet decomposition method is very effective and efficient for fast computation of ECG signal analysis in conjunction with the classifier.
机译:这项工作的主要目的是设计一种新颖的技术,用于基于计算机的心电图(ECG)心律失常分类,重点是减少计算时间和提高准确性。作为朝此方向迈出的第一步,通过使用特征提取技术使神经网络(NN)系统更有效,实现了ECG搏动分类。使用的特征提取技术是小波信号处理。来自离散小波变换的系数用于表示ECG诊断信息,并使用系数提取特征并进行归一化。然后将这些特征集用于分类器中,即简单的前馈传播神经网络(FFBNN)。本文通过使用这四种结构进行计算有效的早期诊断,详细介绍了ECG信号的分类准确性。本研究中使用的神经网络是一种著名的神经网络体系结构,称为多层感知器(MLP),具有反向传播训练算法。心电图信号取自MIT-BIH心电图数据库,用于训练中,将10种心律不齐中的3种心律失常分类。这些是正常的窦性心律,节律性搏动,左束支传导阻滞。在测试之前,建议的结构通过反向传播算法进行训练。结果表明,结合分类器,小波分解方法对于快速计算心电信号分析非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号