首页> 外文OA文献 >Thiosemicarbazone complexes of transition metals: Synthesis, characterization and study of reactivity
【2h】

Thiosemicarbazone complexes of transition metals: Synthesis, characterization and study of reactivity

机译:过渡金属硫代氨基脲络合物的合成,表征和反应性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chapter 1: In this chapter the scope of the present investigation is delineated briefly along with the aim of the work.udChapter 2: The syntheses and characterization of some new mixed-ligand nickel(II) complexes {[Ni(L1)(PPh3)] (1); [Ni(L1)(Py)] (2); [Ni(L2)(PPh3)]∙DMSO (3); [Ni(L2)(Imz)] (4), [Ni(L3)(4‒pic)] (5) and [{Ni(L3)}2(μ‒4,4′‒byp)]∙2DMSO (6)} of the selected three thiosemicarbazones {4‒(p‒X‒phenyl)thiosemicarbazone of salicylaldehyde} (H2L1‒3) are described in the present chapter, differing in the inductive effect of the substituent X (X = F, Br and OCH3), in order to observe their influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and the metal complexes are successfully characterized by elemental analysis, IR, UV‒Vis, NMR spectroscopy and cyclic voltammetry. Molecular structures of four mononuclear (1‒3 and 5) and one dinuclear (6) Ni(II) complexes have been determined by X‒ray crystallography. The complexes have been screened for their antibacterial activity against Escherichia coli and Bacillus. Minimum inhibitory concentration of these complexes indicates compound 4 as the potential lead molecule for drug designing.udChapter 3: 4–(p–X–phenyl)thiosemicarbazone of napthaldehyde {where, X = Cl (HL1) and X = Br (HL2)}, thiosemicarbazone of quinoline–2–carbaldehyde (HL3) and 4–(p–fluorophenyl)thiosemicarbazone of salicylaldehyde (H2L4) and their copper(I), {[Cu(HL1)(PPh3)2Br]·CH3CN (1) and [Cu(HL2)(PPh3)2Cl]·DMSO (2)} and copper(II), {[(Cu2L32Cl)2(–Cl)2]·2H2O (3) and [Cu(L4)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI–MS, IR and UV–Vis spectroscopy. Molecularudvi structures of all the Cu(I) and Cu(II) complexes have been determined by X–ray crystallography. All the complexes (1–4) were tested for their ability to exhibit DNA-binding and -cleavage activity. The complexes effectively interact with CT–DNA possibly by groove binding mode, with binding constants ranging from 104 −105 M–1. Among the complexes, 3 show highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.udChapter 4: Oxygen atom transfer (OAT) reactivity of dioxidomolybdenum(VI) complexes [Mo(VI)O2L1‒6] (1‒6) {4–(p–bromophenyl)thiosemicarbazone of salicylaldehyde (H2L1), 4–(p–X–phenyl)thiosemicarbazone of o–vanillin {where, X = F (H2L2) and X = Cl (H2L3) and X = OMe (H2L4)}, 4–(p–bromophenyl)thiosemicarbazone of 5–bromosalicylaldehyde (H2L5), and 4–(p–chlorophenyl)thiosemicarbazone of o–hydroxynaphthaldehyde (H2L6)} with PPh3 have been investigated. The OAT reactions proceed through the formation of OPPh3, which have been characterized by 31P NMR. Dioxidomolybdenum(VI) complexes [Mo(VI)O2L1/5/6(DMSO)] (1a, 5a & 6a), [Mo(VI)O2L2/4(H2O)] (2a & 4a), and [Mo(VI)O2L3(DMSO)]4·2DMSO (3a) and monooxidomolybdenum(IV) complexes [Mo(IV)OL1‒6(N‒N)] (7‒12) {where, N‒N = 2,2'‒bipyridyl or 1,10‒phenanthroline} are reported as the product of substrate binding and oxygen atom transfer reactivity of dioxidomolybdenum(VI) complexes [Mo(VI)O2L1‒6] (1‒6) respectively. All the complexes have been spectroscopically characterized. Molecular structures of some of the Mo(VI) (1a‒4a) and Mo(IV) complexes (7 and 9‒11) have been determined by single crystal X–ray crystallography. The catalytic activity of Mo(VI) complexes (1a‒6a) have also been studied.udChapter 5: The synthesis and characterization of an oxidovanadium(IV) [VIVO(L)(acac)] (1) and two dioxidovanadium(V) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of {(4–(p–fluorophenyl)thiosemicarbazone) of pyridine–2–aldehyde} (HL) is described in the present study. The oxidovanadium(IV) species [VIVO(L)(acac)] (1) was synthesized in usual way by the reaction of metal precursor VO(acac)2 with thiosemicarbazone ligand (HL) in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the sameudvii product i.e. dioxidovanadium(V) complex [VVO2(L)] (2a), whereas [VVO2(L')] (2) was synthesized during recrystallization of [VIVO(L)(acac)] (1) in DMSO where the original ligand (HL) is transformed to a rearranged new ligand (HL'). The ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen in presence of DMSO and transformed to the corresponding dioxidovanadium(V) species through in situ reaction. The synthesized ligand and the metal complexes were characterized by elemental analysis, IR, UV–Vis, NMR and EPR spectroscopy. Molecular structures of complex 1 [VIVO(L)(acac)] and complex 2 [VVO2(L')] have been determined by single crystal X–ray crystallography. Complexes 1 & 2 show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 1 being more potent, is comparable to insulin at 100 μM concentration, while complex 2 has considerable insulin mimetic activity. In addition, the in vitro antiproliferative activity of the complexes 1 & 2 against the MCF–7 and Vero cell lines were also assayed.udChapter 6: 4‒(p‒methoxyphenyl)thiosemicarbazone of o‒hydroxynapthaldehyde (H2L1), 4‒(p‒methoxyphenyl)thiosemicarbazone of benzoyl pyridine (HL2) and 4–(p–chlorophenyl)thiosemicarbazone of o‒vanillin (H2L3) and their dimeric Zn(II) complexes [{ZnL1(DMSO)}2]·3DMSO (1), [{ZnL2Cl}2] (2), and a novel tetrameric Zn(II) complex [(Zn2L3)2(–OAc)2(3–O)2] (3) are reported. The synthesized ligands and their zinc complexes were characterized by elemental analysis, NMR, IR and UV–Vis spectroscopy. Molecular structures of all the complexes (1‒3) have been determined by single crystal X–ray crystallography.
机译:第1章:在本章中,简要介绍了本研究的范围以及工作的目的。 ud第2章:某些新型混合配体镍(II)配合物{[Ni(L1)(PPh3)的合成和表征)](1); [Ni(L1)(Py)](2); [Ni(L2)(PPh3)]∙DMSO(3); [Ni(L2)(Imz)](4),[Ni(L3)(4‒pic)](5)和[{Ni(L3)} 2(μ‒4,4′‒byp)]∙2DMSO(本章介绍了所选择的三种硫代半氨基甲酮{水杨醛的4‒(对‒X‒苯基)硫代半碳}}(H2L1‒3)},它们在取代基X的感应作用上有所不同(X = F,Br和OCH3),以观察其对配合物氧化还原电势和生物活性的影响(如果有的话)。通过元素分析,IR,UV‒Vis,NMR光谱和循环伏安法成功地表征了所有合成的配体和金属配合物。 X射线晶体学测定了四个单核(1‒3和5)和一个双核(6)Ni(II)配合物的分子结构。已经针对所述复合物针对大肠杆菌和芽孢杆菌的抗菌活性进行了筛选。这些复合物的最低抑菌浓度表明化合物4是潜在的药物设计先导分子。 ud第3章:4-(对-X-苯基)萘乙硫半脲{其中,X = Cl(HL1)和X = Br(HL2) },喹啉-2-甲醛(HL3)和水杨醛(H2L4)的4-(对氟苯基)硫代半脲及其铜(I),{[Cu(HL1)(PPh3)2Br]·CH3CN(1)和[Cu(HL2)(PPh3)2Cl]·DMSO(2)}和铜(II),{[((Cu2L32Cl)2(–Cl)2]·2H2O(3)和[Cu(L4)(Py)] (4)}复合物在本文报道。合成的配体及其铜络合物已通过元素分析,循环伏安法,NMR,ESI-MS,IR和UV-Vis光谱法成功表征。所有的Cu(I)和Cu(II)配合物的分子 udvi结构已通过X射线晶体学测定。测试了所有复合物(1-4)的DNA结合和切割活性。这些复合物可能通过凹槽结合模式与CT-DNA有效相互作用,结合常数范围为104 -105 M-1。在复合物中,有3种对pUC19 DNA的化学裂解活性最高(60%),而光诱导的DNA裂解活性最高(80%)。最后,针对HeLa细胞系测定了所有复合物的体外抗增殖活性。某些配合物已被证明具有与临床推荐药物一样的活性,并且3的强效性可能与其水溶性和在与金属配位的硫半脲配体中存在醌型基团有关。 ud第4章:氧原子氧钼(VI)配合物[Mo(VI)O2L1‒6](1‒6){水杨醛(H2L1)的4-(对-溴苯基)硫代半碳酸盐,4-(对-X-苯基)硫代半碳酸盐的转移(OAT)反应性香兰素{其中,X = F(H2L2)和X = Cl(H2L3)和X = OMe(H2L4)},5-溴水杨醛(H2L5)的4–(对溴苯基)硫代半脲和4–(p研究了邻羟基苯甲醛(H2L6)}的–氯苯基)硫代半碳酰carb与PPh3。 OAT反应通过OPPh3的形成进行,OPPh3的特征在于31P NMR。双氧钼(VI)络合物[Mo(VI)O2L1 / 5/6(DMSO)](1a,5a和6a),[Mo(VI)O2L2 / 4(H2O)](2a和4a)和[Mo(VI )O2L3(DMSO)] 4·2DMSO(3a)和单氧钼(IV)络合物[Mo(IV)OL1‒6(N‒N)](7‒12){其中,N‒N = 2,2'‒联吡啶基或1,10‒菲咯啉}分别是底物结合和双氧钼(VI)配合物[Mo(VI)O2L1‒6](1‒6)的氧原子转移反应性的产物。所有配合物均已进行了光谱表征。一些Mo(VI)(1a‒4a)和Mo(IV)配合物(7和9‒11)的分子结构已通过单晶X射线晶体学测定。 ud第5章:氧化钒(IV)[VIVO(L)(acac)](1)和两个二氧化钒(V)的合成与表征)在本研究中描述了{[4-(对-氟苯基)硫代半碳酮)吡啶-2-醛}(HL)的[VVO2(L')](2)和[VVO2(L)](2a)络合物。通过金属前驱体VO(acac)2与硫代半脲配体(HL)在回流的乙醇中反应,以常规方式合成了氧化钒(IV)物种[VIVO(L)(acac)](1)。 [VIVO(L)(acac)](1)在DMF,CH3CN或EtOH中的重结晶得到相同的 udvii产物,即二氧化钒(V)络合物[VVO2(L)](2a),而[VVO2(L') [2]是在[VIVO(L)(acac)](1)在DMSO中重结晶的过程中合成的,其中原始配体(HL)转化为重排的新配体(HL')。发现在DMSO存在下,配合物1中的配体在连接至亚胺氮的碳中心处进行甲基化,并通过原位反应转化为相应的二氧化钒(V)。通过元素分析,IR,UV-Vis对合成的配体和金属配合物进行表征,NMR和EPR光谱。复合物1 [VIVO(L)(acac)]和复合物2 [VVO2(L')]的分子结构已通过单晶X射线晶体学测定。复合物1和2显示了针对胰岛素反应性L6成肌细胞的体外胰岛素模拟活性,其中复合物1更有效,与100μM浓度的胰岛素相当,而复合物2具有相当的胰岛素模拟活性。此外,还测定了复合物1和2对MCF-7和Vero细胞系的体外抗增殖活性。 ud第6章:邻羟基萘甲醛(H2L1)的4‒(对甲氧基苯基)硫代半碳酮,4‒(苯甲酰基吡啶(HL2)的对‒甲氧基苯基)硫代半脲和‒香兰素(H2L3)的4-(对氯苯基)硫代半脲及其二聚体Zn(II)配合物[{ZnL1(DMSO)} 2]·3DMSO(1), [{ZnL2Cl} 2](2)和新型四聚体Zn(II)络合物[(Zn2L3)2(2–OAc)2(3-O)2](3)被报道。通过元素分析,NMR,IR和UV-Vis光谱对合成的配体及其锌络合物进行表征。所有配合物(1‒3)的分子结构已通过单晶X射线晶体学测定。

著录项

  • 作者

    . Saswati;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号