首页> 外文OA文献 >Kristallographische Texturen und richtungsabhängige mechanische Eigenschaften des Exoskeletts des amerikanischen Hummers sowie Texturen weiterer Biomaterialien
【2h】

Kristallographische Texturen und richtungsabhängige mechanische Eigenschaften des Exoskeletts des amerikanischen Hummers sowie Texturen weiterer Biomaterialien

机译:美国龙虾外骨骼的晶体学织构和定向机械性能,以及其他生物材料的织构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most biological materials fulfil very special tasks and possess properties which could not even be achieved with latest man-made materials. The apparent "technological" advance of some biomaterials is the result of an enhancement over million years by nature. Hence it is not astonishing that various man-made materials are built after the model of nature. To learn from nature and to transfer the results, one must understand the inner construction of natural materials in detail. Many materialscientific details have been already studied, but one special structural aspect which has not yet been studied in detail is the occurrence of pronounced crystallographic and topological orientation distributions in such biological materials. A general strong relationship exists between crystallographic and morphological textures and the resulting mechanical and functional anisotropy of crystalline materials. In biological matter this aspect seems to be of particular importance since natural constructions exploit the presence of structural anisotropy of its natural ingredients in a much more efficient and elegant way than usually encountered in man-made structural materials used in engineering constructions. The chosen model organism to look at in detail is the American lobster - Homarus americanus. With the texture investigations and further calculations done for this work, a variety of new information could be won. For example it was possible to determine the textures of the two crystalline phases of the exoskeleton of the American lobster. With these information about the texture of the chitin phase, which is actual the same in all examined parts, the spatial orientation of the chitin chains could be determined (parallel to the sample surface). Also the structural model for the hierarchical organisation of the lobsters exoskeleton proposed by Raabe et al. 2005a could be supported and proved. With the texture data from calcite phase, characteristic for each examined part of the lobster, the direction dependence of the elastic modulus was determined for this phase. The calculated anisotropy could be correlated thereby in a logical way with the respective mechanical requirements of each part of the lobster. Hence the obtained information can be seen as a helpful contribution for the deeper understanding of the structure and the function of the lobsters exoskeleton. Except the detailed analysis of the American lobster further biological materials have been examined, e.g. crab, horseshoe crab, enamel of a human tooth, teeth of a domestic sow and an european beaver, ivory, beech wood and the shell of a hens egg. Thereby it should be determined first, if these materials are examinable at all with the methods used here and which materials would be interesting and worth, to be examined in detail in future. Analysing these materials, also relatively new methods have been used, e.g. the combined rietveld texture analysis. This method is of particular importance dealing with biological materials, since it represents an "elegant" solution, in order to cope with overlapped pole figures (also from different phases). The enamel of human teeth turned out to be the most interesting and worthwhile material for further future examinations, since only little about the inner structure is known up to now and later on from texture information also physical properties could be calculated. Continuing this work, e.g. new fillings for cavities in teeth could be found with equal properties as enamel itself, because fillings nowadays often posses mechanical properties far away from those of dental enamel itself. So the destruction of healthy teeth by abrasion from the harder fillings of opposing teeth could be avoided.
机译:大多数生物材料都可以完成非常特殊的任务,并具有使用最新的人造材料无法实现的性能。某些生物材料明显的“技术”进步是自然界经过数百万年的增长的结果。因此,根据自然模型建造各种人造材料并不令人惊讶。要从自然界学习并传递结果,必须详细了解自然材料的内部构造。已经研究了许多材料的科学细节,但是尚未进行详细研究的一个特殊的结构方面是在这种生物材料中出现明显的晶体学和拓扑取向分布。晶体学和形态织构与所产生的晶体材料的机械和功能各向异性之间通常存在很强的关系。在生物问题上,这一方面显得尤为重要,因为天然建筑以比通常用于工程建筑的人造结构材料更有效,更优雅的方式利用其天然成分的结构各向异性。要详细研究的示范生物是美洲龙虾-Homarus americanus。通过进行这项工作的纹理研究和进一步的计算,可以赢得各种新信息。例如,可以确定美洲龙虾外骨骼的两个结晶相的织构。有了这些关于几丁质相织构的信息(实际上在所有被检部位中都是相同的),就可以确定几丁质链的空间取向(平行于样品表面)。也是Raabe等人提出的龙虾外骨骼层次结构的结构模型。 2005a可以得到支持和证明。利用方解石相的纹理数据,龙虾每个被检部位的特性,确定了该相的弹性模量的方向依赖性。由此可以以逻辑方式将计算出的各向异性与龙虾各部分的相应机械要求相关联。因此,所获得的信息可以被视为有助于对龙虾外骨骼的结构和功能的更深入了解。除了对美国龙虾的详细分析外,还检查了其他生物材料,例如螃蟹,horse,人类牙齿的珐琅质,家用母猪和欧洲海狸的牙齿,象牙,榉木和蛋壳。因此,应该首先确定这些材料是否完全可以通过此处使用的方法进行检查,以及哪些材料将是有趣的和有价值的,以便将来进行详细检查。分析这些材料,还使用了相对较新的方法,例如。组合的rietveld纹理分析。该方法对于生物材料特别重要,因为它代表了一种“优雅”的解决方案,以便应对重叠的极图(也来自不同的相位)。事实证明,人类牙齿的珐琅质是将来进行进一步检查时最有趣和最有价值的材料,因为到目前为止,人们对内部结构的了解很少,而且以后从纹理信息中还可以计算出物理性质。继续进行这项工作,例如可以找到与牙釉质本身具有相同性能的新的牙齿腔填充物,因为如今的填充物通常具有远非牙釉质本身的机械性能。因此,可以避免健康的牙齿被相对的牙齿较硬的填充物磨损而破坏。

著录项

  • 作者

    Raue Lars;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号