首页> 外文OA文献 >Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory : connections, differences, and numerical comparison
【2h】

Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory : connections, differences, and numerical comparison

机译:双曲守恒律,数值方案和特征理论的多维系统:联系,差异和数值比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many physical problems, for example the behaviour of a compressible fluid, can be modelled as systems of hyperbolic conservation laws, d/dt U + div.F(U) = 0, if certain effects (for instance viscosity) are neglected. One of the first computational schemes for systems of conservation laws was introduced by Godunov in 1959. This scheme is based on exactly solving a Riemann problem at each cell interface and then projecting the solution back onto the space of piecewise constant functions after some finite time step. A major drawback of Godunov's scheme is the necessity to solve all the Riemann problems exactly, which usually consists of an iterative process. To overcome this handicap, there were in the past many ideas for so-called approximate Riemann solvers, i.e. procedures to obtain a suitable approximation to the solution of a Riemann problem. In principle, the idea of Godunov's scheme is at first only applicable to problems in one space dimension. However, problems naturally often arise in two or three space dimensions, and some standard techniques to extend the scheme to more space dimensions have been developped. A detailed description of Riemann solvers and Riemann solver based schemes can for example be found in the textbooks of LeVeque, Kröner, Godlewski and Raviart, and Toro. On the other hand, while the numerical treatment of systems of conservation laws (as well as of other differential equations) has been developped and refined more and more and computers have become increasingly powerful, the classical analytical tool of characteristic theory (see for example Courant and Hilbert) seems to have been sunk little by little into oblivion. Since about 15 years, there is an ongoing discussion (see for example Roe et al) whether one-dimensional Riemann solvers do justice to the multi-dimensional effects arising in systems of conservation laws in multi-dimensions. There were a number of approaches which therefore purposely dispensed with Riemann solvers, and some of which were based on the classical characteristic theory. This thesis includes both a recapitulation of some aspects of the multi-dimensional characteristic theory (and therefore hopefully makes for preventing this beautiful theory from being forgotten) and some new analytical connections and differences between three Riemann solver free approaches. In particular, the thesis includes a new and elementary derivation of Noelle's version of Fey's "Method of Transport" (called MoT-ICE in contrast to Fey's version, which we call MoT-CCE), which on the one hand naturally fits into the framework of so-called state decompositions and flux decompositions (in which also the standard finite volume approach can integrated) and on the other hand is based on the gas-kinetic theory. This etablishes a close connection between the MoT-ICE and the kinetic schemes. Some implementory details for the MoT-ICE and an extensive numerical comparison of the MoT-ICE to a standard, Riemann solver based scheme complete the thesis. This comparison in a way confirms the close connection between the MoT-ICE and the kinetic schemes, but at the same time shows that the MoT-ICE in its current state does not meet the claim of being a reasonable alternative to Riemann solver based schemes.
机译:如果忽略某些影响(例如粘度),则许多物理问题(例如可压缩流体的行为)可以建模为双曲守恒定律系统d / dt U + div.F(U)= 0。守恒律系统的第一个计算方案之一是Godunov在1959年提出的。该方案基于在每个单元界面上精确求解Riemann问题,然后在有限的时间步长之后将解投影回分段常数函数的空间。 。 Godunov方案的主要缺点是必须准确解决所有Riemann问题,这通常包含一个迭代过程。为了克服这一障碍,在过去存在许多关于所谓的近似黎曼(Riemann)解算器的思想,即获得对黎曼问题的解的合适近似的过程。原则上,戈杜诺夫方案的思想首先只适用于一个空间维度的问题。但是,自然会在两个或三个空间尺寸中出现问题,并且已经开发了一些用于将该方案扩展到更大空间尺寸的标准技术。例如,可以在LeVeque,Kröner,Godlewski和Raviart和Toro等教科书中找到有关Riemann求解器和基于Riemann求解器的方案的详细说明。另一方面,尽管保护律系统(以及其他微分方程)的数值处理得到了发展和完善,并且计算机变得越来越强大,但特征理论的经典分析工具(例如,Courant和希尔伯特(Hilbert)似乎一点一点地被遗忘了。自大约15年以来,一直在进行讨论(例如,见Roe等人),一维Riemann求解器是否对多维守恒律系统中产生的多维效应公道。因此,有目的地放弃了黎曼求解器,有许多方法是基于经典特征理论的。本论文既包括对多维特征理论某些方面的概述(因此有望防止这种美丽的理论被遗忘),还包括三种免费的无黎曼求解器方法之间的新的分析联系和差异。特别是,论文包括对Noelle版本的Fey的“运输方法”(与Moy-ICE相对的Fey版本的MoT-ICE)进行了新的基础推导,一方面,它自然地适合于框架所谓的状态分解和通量分解(也可以集成标准有限体积方法),另一方面基于气体动力学理论。这建立了MoT-ICE与动力学方案之间的紧密联系。 MoT-ICE的一些实现细节以及MoT-ICE与基于Riemann求解器的标准方案的大量数值比较完成了本文。这种比较以某种方式证实了MoT-ICE和动力学方案之间的紧密联系,但同时表明,MoT-ICE在其当前状态下不能满足作为基于Riemann求解器方案的合理替代方案的要求。

著录项

  • 作者

    Kröger Tim;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号