首页> 外文OA文献 >Resistive transition and protection of LHC supenconduction cables and magnets
【2h】

Resistive transition and protection of LHC supenconduction cables and magnets

机译:LHC超导电缆和磁体的电阻转换和保护

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Superconductivity and superfluidity are macroscopic quantum-effects that are used in technology. One of the most important applications of superconductivity is the design of strong magnets, which guide particles at very high energies in circular accelerators. In the Large Hadron Collider (LHC), which is being constructed at the European Laboratory for Particle Physics (CERN) close to Geneva, magnets wound with conventional superconductors are cooled with superfluid helium to access even higher magnetic field strengths. The resistive transition from the superconducting to the normal-conducting state (known as a quench) can be characterised by mechanical, electrodynamic and thermodynamic processes. Due to the high amount of stored magnetic energy, a quench can potentially cause damage in superconducting elements by overheating or excessive voltages. A detailed description of the related mechanisms is needed to understand the quench process better and to design a reliable protection system. This requires analytical and more importantly numerical models, which include the heat generation of the superconductor, cooling by helium, the thermodynamic propagation of the normal-conducting zone, as well as the impact of induced eddy currents. In the framework of this thesis, a new numerical algorithm has been developed. The improvements and advancements made in the quench modelling are explained in this thesis. It also includes detailed analyses and simulation studies of the quench processes in LHC superconducting cables and magnets. The LHC protection system that has been optimised by the outcome of this thesis is presented. The results and consequences of the performed analyses and simulations are summarised.
机译:超导性和超流动性是技术中使用的宏观量子效应。超导最重要的应用之一是设计坚固的磁体,该磁体在圆形加速器中以很高的能量引导粒子。在日内瓦附近的欧洲粒子物理实验室(CERN)建造的大型强子对撞机(LHC)中,缠绕有常规超导体的磁体用超流氦冷却,以获取更高的磁场强度。从超导状态到正常导电状态(称为失超)的电阻跃迁可以通过机械,电动力学和热力学过程来表征。由于大量存储的磁能,淬火可能会因过热或电压过高而损坏超导元件。需要对相关机制进行详细描述,以更好地了解淬火过程并设计可靠的保护系统。这需要分析模型,更重要的是数字模型,其中包括超导体的发热,氦气的冷却,正常导电区的热力学传播以及感应涡流的影响。在本文的框架内,开发了一种新的数值算法。本文介绍了淬火建模的改进和进展。它还包括对LHC超导电缆和磁体的淬火过程的详细分析和仿真研究。提出了通过本论文的结果而优化的大型强子对撞机保护系统。总结了所进行的分析和模拟的结果和结果。

著录项

  • 作者

    Sonnemann Florian;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号