首页> 外文学位 >Processing and protection of rare earth permanent magnet particulate for bonded magnet applications.
【24h】

Processing and protection of rare earth permanent magnet particulate for bonded magnet applications.

机译:用于粘结磁体的稀土永磁体颗粒的加工和保护。

获取原文
获取原文并翻译 | 示例

摘要

Rapid solidification of novel mixed rare earth-iron-boron, MRE2 Fe14B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 105-106K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH)max for bonded magnets in high performance applications.; Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF3). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while "in flight" may eliminate the need for post atomization treatment, otherwise a necessary step for oxidation and corrosion resistance. Stability of these thin films was attributed to the reduction of each RE's respective oxide during processing; recognizing that fluoride compounds exhibit a slightly higher (negative) free energy driving force for formation. Formation of RE-type fluorides on the surface was evidenced through x-ray photoelectron spectroscopy (XPS). Concurrent research with auger electron spectroscopy has been attempted to accurately quantify the depth of fluoride formation in order to grasp the extent of fluorination reactions with spherical and flake particulate. Gas fusion analysis on coated powders (dia. 45mum) from an optimized experiment indicated an as-atomized oxygen concentration of 343ppm, where typical, nonpassivated RE atomized alloys exhibit an average of 1800ppm oxygen. Thermogravimetric analysis (TGA) on the same powder revealed a decreased rate of oxidation at elevated temperatures up to 300°C, compared to similar uncoated powder.
机译:通过高压气体雾化(HPGA)快速凝固的新型混合稀土-铁-硼MRE2 Fe14B(MRE = Nd,Y,Dy;目前)磁铁合金具有与通过熔融纺丝生产的紧密相关合金相似的性能和结构(MS)在低轮速下。最近在HPGA粉末(使用He雾化气体)的永磁体(PM)合金设计中添加了碳化钛和锆,从而可以实现高度精炼的微观结构,其磁性能在105-106K / s的冷却速率下接近熔纺颗粒。通过生产具有理想质量的熔纺薄带的HPGA粉末,消除了粘结磁体制造过程中对粉碎薄带的需求。 HPGA粉末的球形几何形状更适合于粘结永磁体的加工,因为在压缩和注塑成型过程中可以获得更高的负载分数。球形PM粉末的这种增加的体积负载可以预测为高性能应用中的粘结磁体产生更高的最大能量乘积(BH)max。对于在温度升高和暴露在潮湿环境中的应用中的粘结磁体的大规模生产,必须对含RE的粉末进行钝化处理。由于颗粒的氧化和腐蚀而导致的不可逆的磁损耗是RE-Fe-B基合金在进一步加工过程中的已知缺点。注塑成型以及用作粘结磁体的过程中。为了抵消这些影响,改进的气体雾化室允许通过注入反应性气体三氟化氮(NF3)来对固化的颗粒表面进行原位钝化的新方法。在雾化球形RE-Fe-B细粉的雾化过程中控制表面化学的能力产生了优于当前加工方法的优势。特别地,在“飞行”时涂覆颗粒的能力可以消除对后雾化处理的需要,否则就不需要进行抗氧化和抗腐蚀的步骤。这些薄膜的稳定性归因于加工过程中每个RE各自氧化物的减少。认识到氟化物显示出更高的(负)自由能驱动力来形成。通过X射线光电子能谱(XPS)证实了RE型氟化物在表面上的形成。为了掌握与球形和片状颗粒发生氟化反应的程度,已尝试与螺旋钻电子光谱学同时进行研究以准确定量氟化物形成的深度。通过优化实验对涂层粉末(直径<45mum)进行的气体熔融分析表明,雾化后的氧浓度为343ppm,典型的非钝化RE雾化合金的平均氧含量为1800ppm。与相似的未涂覆粉末相比,对同一粉末进行热重分析(TGA)表明,在高达300°C的高温下,氧化速率降低。

著录项

  • 作者

    Sokolowski, Peter Kelly.;

  • 作者单位

    Iowa State University.$bMaterials Science and Engineering.;

  • 授予单位 Iowa State University.$bMaterials Science and Engineering.;
  • 学科 Engineering Materials Science.
  • 学位 M.S.
  • 年度 2007
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号