首页> 外文OA文献 >Indirect ammoxidation of glycerol into acrylonitrile via the intermediate acrolein
【2h】

Indirect ammoxidation of glycerol into acrylonitrile via the intermediate acrolein

机译:通过中间丙烯醛将甘油间接氨氧化为丙烯腈

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the depleting reserves of coal, oil and natural gas and to their negative impact on the environment, the humanity is forced to find renewable alternatives to replace the fossil feedstocks for the production of energy and chemical products. An example for an area of application where renewables are already used to substitute fossil feedstocks is the production of fuels. Biodiesel is one of the most popular biofuels nowadays. It is produced by transesterification of vegetable oils and fats. In this process, glycerol is formed as a by-product (approximately 10 wt.%). Glycerol is a versatile starting material which has up to 2000 applications. One very promising use of glycerol as starting material would be the dehydration of glycerol into acrolein. It could then be further converted into acrylonitrile – one of the most important monomers in the polymer production worldwide – by ammoxidation in the presence of ammonia and oxygen over mixed metal oxide catalysts. Today, acrylonitrile is exclusively synthesized from fossil feedstocks like propene and propane on an industrial scale. Therefore, a process combining the dehydration of glycerol to acrolein and the ammoxidation of the latter to acrylonitrile would be an alternative to the production processes based on fossil feedstocks. Thus, both reaction steps were studied separately at first – with focus on the ammoxidation of acrolein – and connected in a tandem reactor setup finally. For the first step of dehydration of glycerol to acrolein, we used previously optimized WO3/TiO2 catalysts, while oxide catalysts containing antimony, iron, vanadium and molybdenum were developed and used for the second ammoxidation step. Especially, the Sb-Fe-O catalysts were found highly selective and the influence of Sb/Fe ratio was subsequently studied. The presence of a FeSbO4 mixed phase on the synthesized samples was correlated to a high selectivity to acrylonitrile. Further, an increase in selectivity to acrylonitrile with the reaction time was observed, which was explained by the progressive formation of additional amounts of FeSbO4 over the catalysts during the reaction. After optimizing the key reaction parameter (reaction temperature, catalyst amount, NH3/acrolein ratio, O2/acrolein ratio) within a design of experiments, both reaction steps were connected in a tandem reactor. A maximum yield in acrylonitrile of 40% (based on glycerol) was obtained.
机译:由于煤炭,石油和天然气的枯竭及其对环境的负面影响,人类被迫寻找可再生替代品来代替化石原料来生产能源和化学产品。在已经将可再生能源替代化石原料的应用领域中,燃料的生产就是一个例子。生物柴油是当今最流行的生物燃料之一。它是通过植物油和脂肪的酯交换反应生产的。在该过程中,甘油作为副产物形成(约10重量%)。甘油是一种用途广泛的原料,具有多达2000种应用。甘油作为原料的非常有前景的用途是甘油脱水成丙烯醛。然后可以通过在混合金属氧化物催化剂上存在氨和氧的情况下进行氨氧化,将其进一步转化为丙烯腈(全世界聚合物生产中最重要的单体之一)。如今,丙烯腈是在工业规模上完全由化石原料(如丙烯和丙烷)合成的。因此,结合甘油脱水成丙烯醛和将后者氨氧化成丙烯腈的方法将替代基于化石原料的生产方法。因此,首先分别研究了两个反应步骤-重点是丙烯醛的氨氧化-并最终将其串联连接。对于甘油脱水为丙烯醛的第一步,我们使用了先前优化的WO3 / TiO2催化剂,同时开发了含有锑,铁,钒和钼的氧化物催化剂,并将其用于第二步氨氧化步骤。特别地,发现Sb-Fe-O催化剂具有高选择性,并且随后研究了Sb / Fe比率的影响。合成样品中FeSbO4混合相的存在与对丙烯腈的高选择性相关。此外,观察到对丙烯腈的选择性随反应时间增加,这可以通过在反应期间在催化剂上逐渐形成额外量的FeSbO4来解释。在实验设计中优化了关键的反应参数(反应温度,催化剂量,NH3 /丙烯醛比例,O2 /丙烯醛比例)后,两个反应步骤都在串联反应器中连接。获得的丙烯腈最大产率为40%(基于甘油)。

著录项

  • 作者

    Liebig Carsten;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号