首页> 外文OA文献 >Finite element simulation of stress evolution in thermal barrier coating systems
【2h】

Finite element simulation of stress evolution in thermal barrier coating systems

机译:热障涂层系统中应力演化的有限元模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gas turbine materials exposed to extreme high temperature require protective coatings. To design reliable components, a better understanding of the coating failure mechanisms is required. Damage in Thermal Barrier Coating Systems (TBCs) is related to oxidation of the Bond Coat, sintering of the ceramic, thermal mismatch of the material constituents, complex shape of the BC/TGO/TBC interface, redistribution of stresses via creep and plastic deformation and crack resistance. In this work, experimental data of thermo-mechanical properties of CMSX-4, MCrAlY (Bond Coat) and APS-TBC (partially stabilized zirconia), were implemented into an FE-model in order to simulate the stress development at the metal/ceramic interface. The FE model reproduced the specimen geometry used in corresponding experiments. It comprises a periodic unit cell representing a slice of the cylindrical specimen, whereas the periodic length of the unit cell equals an idealized wavelength of the rough metal/ceramic interface. Experimental loading conditions in form of thermal cycling with a dwelltime at high temperature and consideration of continuous oxidation were simulated. By a stepwise consideration of various material properties and processes, a reference model was achieved which most realistically simulated the materials behavior. The influences of systematic parameter variations on the stress development and critical sites with respect to possible crack paths were shown. Additionally, crack initiation and propagation at the peak of asperity at BC/TGO interface was calculated. It can be concluded that a realistic modeling of stress development in TBCs requires at least reliable data of i) BC and TGO plasticity, ii) BC and TBC creep, iii) continuous oxidation including in particular lateral oxidation, and iv) critical energy release rate for interfaces (BC/TGO, TGO/TBC) and for each layer. The main results from the performed parametric studies of material property variations suggest that porosity in the TBC should be increased and sintering decreased, in order to prevent or hinder continuous paths of tensile stresses above the valleys in the TBC. It was shown that variations of creep rates in the BC influence marginaly stress values in TBCs. Therefore neither a positive nor a negative influence on the lifetime can be extrapolated. It was shown that higher creep rates in the TBC layer led to a lower stress level. The extreme variations of thermal expansion coefficient (±50%) help in better understanding of these variations on stress development. The creep of base material only slightly affects stress field development, under pure thermal cycling and can therefore be neglected in this case. As the tensile stresses increase with a relatively high fraction of lateral oxidation not only the out-of-plane oxidation kinetics, but also its lateral component should be low. The modification of amplitude and wavelength of the asperity showed that with increasing roughness a continuous radial tensile path in the TBC and partially in the TGO was formed already after 161 cycles. The variations of wavelength, amplitude and shapes improve the understanding of stress development. The large variety of parametric variations studied by the present work in a highly complex and rather realistic FE model contribute significantly to an enhanced understanding of TBCs. This is supported by the final conclusion, that the set of crucial parameters could be reduced to the time dependent deformation behavior of TBC and TGO, the oxidation kinetics, including lateral oxidation and the shape function of the interface asperity.
机译:暴露于极端高温下的燃气轮机材料需要保护涂层。为了设计可靠的组件,需要对涂层失效机理有更好的了解。热障涂层系统(TBC)的损坏与粘结涂层的氧化,陶瓷的烧结,材料成分的热失配,BC / TGO / TBC界面的复杂形状,通过蠕变和塑性变形造成应力的重新分布以及抗裂性。在这项工作中,将CMSX-4,MCrAlY(粘结层)和APS-TBC(部分稳定的氧化锆)的热机械性能的实验数据转化为FE模型,以模拟金属/陶瓷上的应力发展接口。 FE模型复制了在相应实验中使用的样品几何形状。它包括一个代表圆柱试样切片的周期性晶胞,而晶胞的周期性长度等于粗糙金属/陶瓷界面的理想波长。模拟了在高温下具有停留时间的热循环形式的实验负载条件,并考虑了连续氧化的情况。通过逐步考虑各种材料特性和过程,获得了最实际地模拟材料行为的参考模型。显示了系统参数变化对应力发展和可能的裂纹路径的关键部位的影响。此外,还计算了在BC / TGO界面粗糙峰处的裂纹萌生和扩展。可以得出结论,在TBC中建立应力发展的现实模型至少需要以下可靠数据:i)BC和TGO可塑性,ii)BC和TBC蠕变,iii)连续氧化,尤其包括横向氧化,以及iv)临界能量释放速率用于接口(BC / TGO,TGO / TBC)和每个层。对材料性能变化进行的参数研究的主要结果表明,应增加TBC中的孔隙率并减少烧结,以防止或阻碍TBC谷部上方拉伸应力的连续路径。结果表明,BC蠕变速率的变化会影响TBC的临界应力值。因此,不能推断出对寿命的正面或负面影响。结果表明,TBC层中较高的蠕变速率导致较低的应力水平。热膨胀系数的极端变化(±50%)有助于更好地理解应力发展过程中的这些变化。在纯热循环下,基体材料的蠕变仅轻微影响应力场的发展,因此在这种情况下可以忽略不计。当拉伸应力随着较高比例的横向氧化而增加时,不仅平面外氧化动力学而且其横向分量也应较低。粗糙的振幅和波长的变化表明,随着粗糙度的增加,在161个循环之后,已经在TBC中和部分在TGO中形成了连续的径向拉伸路径。波长,振幅和形状的变化增进了对应力发展的理解。在高度复杂且相当现实的有限元模型中,当前工作研究的大量参数变化极大地增强了对TBC的理解。最终结论支持了这一点,即关键参数集可以减少为时间依赖性的TBC和TGO变形行为,氧化动力学(包括横向氧化)和界面粗糙形状函数。

著录项

  • 作者

    Bednarz Piotr;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号