首页> 外文OA文献 >Nonlinear FE simulation and active vibration control of piezoelectric laminated thin walled smart structures
【2h】

Nonlinear FE simulation and active vibration control of piezoelectric laminated thin walled smart structures

机译:压电层合薄壁智能结构的非线性有限元模拟和主动振动控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation deals with nonlinear finite element modeling and active vibration control for piezoelectric integrated smart structures, and is presented in two parts. In the first part, an electro-mechanically coupled large rotation finite element model is developed for static and dynamic analysis of thin-walled structures with piezoelectric sensor and actuator layers. The present large rotation theory is based on the first-order shear deformation hypothesis, which has six independent kinematic parameters but expressed by five nodal degrees of freedom. Unrestricted finite rotations are described by two rotations using the Euler angle representation method. Due to the assumption of small strains and weak electric potential, linear piezoelectric coupled constitutive equations and a linearly distributed electric potential through the thickness are considered. In order to show the necessity of the large rotation theory in the application of thin-walled composite or smart structures undergoing large rotations, several simplified nonlinear shell theories are implemented into finite elements for thin-walled structures as well. The second part develops a disturbance rejection control with a Proportional-Integral (PI) observer which uses step functions to construct a fictitious model of disturbances for active vibration control of smart structures. To improve the dynamic behavior of the existing PI observer, a Generalized PI (GPI) observer is proposed and developed. Therefore, any unknown disturbances can be estimated and compensated by the present disturbance rejection control with either a PI or GPI observer. Additionally, PID, LQR and LQG control strategies are implemented to show the advantages of the proposed disturbance rejection control.
机译:本文主要研究压电集成智能结构的非线性有限元建模和主动振动控制,分为两个部分。在第一部分中,建立了机电耦合的大旋转有限元模型,用于对带有压电传感器和执行器层的薄壁结构进行静态和动态分析。当前的大旋转理论基于一阶剪切变形假设,该假设具有六个独立的运动学参数,但由五个节点自由度表示。使用欧拉角表示方法通过两次旋转来描述无限制的有限旋转。由于假设的应变小且电势弱,因此考虑了线性压电耦合本构方程和整个厚度的线性分布电势。为了显示大旋转理论在薄壁复合材料或智能结构大旋转应用中的必要性,几种简化的非线性壳理论也被应用到薄壁结构的有限元中。第二部分使用比例积分(PI)观察器开发了一种干扰抑制控制,该观测器使用阶跃函数来构建虚拟的干扰模型,用于智能结构的主动振动控制。为了改善现有PI观察器的动态行为,提出并开发了通用PI(GPI)观察器。因此,任何未知的干扰都可以通过PI或GPI观测器通过当前的干扰抑制控制进行估算和补偿。此外,通过实施PID,LQR和LQG控制策略来展示所提出的干扰抑制控制的优势。

著录项

  • 作者

    Zhang Shunqi;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号