首页> 外文OA文献 >Eine Untersuchung zur Entwicklung der mentalen Repräsentation von Zahlen bei Kindern der zweiten Schulklasse anhand der Navon-Aufgabe
【2h】

Eine Untersuchung zur Entwicklung der mentalen Repräsentation von Zahlen bei Kindern der zweiten Schulklasse anhand der Navon-Aufgabe

机译:基于Navon任务的二年级儿童数字心理表征发展的调查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The following paper deals with number crunching as well as parity concept concerning second grader. Based on the current data of former studies, there is obvious inconsistency whether children are using irrelevant properties in order to process a target number and furthermore how the properties of some distractor play a major role in finding solutions. In addition, can parity solutions be attained by counting, division by two or by direct recall of specific information? So far parity concept is a matter of mere speculation. The study at hand aims to eliminate these questions and provides answers with the aid of response time and error rates of second graders using parity assignments of composite figures (please refer to Navon, 1977). Further on, the Navon task and the achieved score of a test for dyscalculia (Tedi-Math) were correlated and put together with path analysis. To sum up, the results show, that relevant information of the distractor are used for solution finding (congruence effect), irrelevant information such as numerical size is not an object (missing distance effect and missing SNARC effect). However, irrelevant properties of the target number appear to be processed along with the distractor (problem size effect). Thus finding correlation between multiplication performances within the test of dyscalculia and response time at solving parity assignments concludes that parity decisions are achieved by other mechanisms rather than counting. The general comprehension of mathematics indicated by means of the test of dyscalculia shows no correlation with any results of the Navon task, arriving at a conclusion that a lack of mathematical performances in the context of the average (inclusion criteria) can not be taken into account referring to mechanisms of number crunching. Finally, further studies might show if that is the case with dyscalculics.
机译:以下论文涉及二年级学生的数字运算以及奇偶校验概念。根据以前的研究的当前数据,儿童是否使用无关的属性来处理目标数,以及某些干扰因素的属性在寻找解决方案中如何起主要作用,显然存在矛盾。此外,是否可以通过计数,除以二或直接调用特定信息来获得奇偶校验解决方案?到目前为止,平价概念仅是猜测。这项研究的目的是消除这些问题,并通过使用复合数字的奇偶校验分配(通过参考Navon,1977)在二年级学生的响应时间和错误率的帮助下提供答案。进一步地,将Navon任务和测算错误的测试(Tedi-Math)的得分进行关联,并与路径分析放在一起。总而言之,结果表明,牵张器的相关信息用于求解(同余效应),诸如数值大小之类的无关信息不是对象(缺少距离效应和SNARC效应缺失)。但是,目标编号的无关紧要的属性似乎与干扰因素一起被处理(问题大小效应)。因此,在运算障碍的测试中发现乘法性能与解决奇偶校验分配的响应时间之间存在相关性,得出的结论是,奇偶校验决策是通过其他机制而不是计数来实现的。通过运算障碍测试表明的数学一般理解与Navon任务的任何结果均不相关,得出的结论是,不能考虑在平均值(包含标准)的情况下缺乏数学表现指数字运算的机制。最后,进一步的研究可能会显示出营养不良症是否属于这种情况。

著录项

  • 作者

    Nelting Barbara Renate;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号