首页> 外文OA文献 >Topic-related Sentiment Analysis for Discovering Contradicting Opinions in Weblogs
【2h】

Topic-related Sentiment Analysis for Discovering Contradicting Opinions in Weblogs

机译:用于在博客中发现矛盾意见的主题相关情感分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work addresses the problem of analyzing the evolution of community opinions across time. First, a two-step approach is introduced to determine a continuous sentiment value for each topic discussed in a text based on SentiWordNet as lexical resource. Sentences are clustered according to their topic using Latent Dirichlet Allocation. Both steps are extensively evaluated and tested. The output is then exploited for studying contradictions among weblog posts and comments. We introduce a novel measure for contradictions based on a mean value and the variance of opinions among different posts. In addition, a method is proposed, which identifies posts with contradicting opinions on certain topics on a basis of such a measure. It can be used to analyze and track opinion evolution over time and to identify interesting trends and patterns. The developed algorithm is applied to a dataset of medical blogs and comments on political news with promising performance and accuracy.
机译:这项工作解决了分析社区意见随时间变化的问题。首先,采用两步法来确定基于SentiWordNet作为词汇资源的文本中讨论的每个主题的连续情感值。句子根据潜在主题使用潜在狄利克雷分配进行聚类。这两个步骤都经过了广泛的评估和测试。然后将输出用于研究博客帖子和评论之间的矛盾。我们基于平均值和不同职位之间的观点差异引入了一种新颖的矛盾度量。另外,提出了一种方法,该方法基于这样的措施来识别在某些主题上具有相反观点的帖子。它可以用来分析和跟踪随时间变化的观点,并确定有趣的趋势和模式。所开发的算法被应用于医学博客和对政治新闻的评论的数据集,具有良好的性能和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号