首页> 外文OA文献 >Brain-Computer Evolutionary Multi-Objective Optimization (BC-EMO): a genetic algorithm adapting to the decision maker
【2h】

Brain-Computer Evolutionary Multi-Objective Optimization (BC-EMO): a genetic algorithm adapting to the decision maker

机译:脑计算机进化多目标优化(BC-EMO):一种适应决策者的遗传算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The centrality of the decision maker (DM) is widely recognized in the Multiple Criteria Decision Making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of Reactive Optimization(RO) for evolutionary interactive multi-objective optimization. RO follows to the paradigm of "learning while optimizing", through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a k-fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems.
机译:决策者(DM)的中心性在多重标准决策社区中得到了广泛认可。这转化为强调无缝的人机交互,并使解决方案技术适应从DM逐步获取的知识。本文采用反应性优化(RO)的方法进行进化交互式多目标优化。通过使用在线机器学习技术作为自整定优化方案的组成部分,RO遵循“边学习边优化”的范例。几个解决方案的用户判断用于构建用户效用函数的健壮增量模型,其目的是减少DM识别满意解决方案所需的认知负担。在效用函数训练过程中,将支持向量排序技术与k倍交叉验证过程一起使用,以针对当前问题选择最佳内核。给出了一系列基准问题的实验结果。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号