首页> 外文OA文献 >Identifying Intrusions in Computer Networks Based on Principal Component Analysis
【2h】

Identifying Intrusions in Computer Networks Based on Principal Component Analysis

机译:基于主成分分析的计算机网络入侵识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most current anomaly Intrusion Detection Systems (IDSs)detect computer network behavior as normal or abnormal but cannot identify the type of attacks. Moreover, most current intrusion detection methods cannot process large amounts of audit data for real-time operation. In this paper, we propose a novel method for intrusion identification in computer networks based on Principal Component Analysis (PCA). Each network connection is transformed into an input data vector. PCA is employed to reduce the high dimensional data vectors and identification is handled in a low dimensional space with high efficiency and low use of system resources. The normal behavior is profiled based on normal data for anomaly detection and the behavior of each type of attack are built based on attack data for intrusion identification. The distance between a vector and its reconstruction onto those reduced subspaces representing different types of attacks and normal activities is used for identification. The method is tested with network data from MIT Lincoln labs for the 1998 DARPA Intrusion Detection Evaluation Program and testing results show that the method and model is promising in terms of identification accuracy and computational efficiency for real-time intrusion identification.
机译:当前大多数异常入侵检测系统(IDS)会将计算机网络行为检测为正常还是异常,但无法识别攻击类型。此外,大多数当前的入侵检测方法无法处理大量审核数据以进行实时操作。在本文中,我们提出了一种基于主成分分析(PCA)的计算机网络入侵识别新方法。每个网络连接都转换为输入数据向量。 PCA用于减少高维数据向量,并且在低维空间中以高效率和低系统资源使用来处理标识。根据正常数据对正常行为进行概要分析以进行异常检测,并根据攻击数据构建每种攻击的行为以进行入侵识别。向量及其在代表不同类型攻击和正常活动的缩小子空间上的重建之间的距离用于识别。针对麻省理工学院林肯实验室的网络数据,对1998年DARPA入侵检测评估程序进行了测试,测试结果表明,该方法和模型在识别精度和实时入侵识别的计算效率方面很有希望。

著录项

  • 作者

    Wang Wei; Battiti Roberto;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号