首页> 外文OA文献 >Classification of sip messages by a syntax filter and SVMs
【2h】

Classification of sip messages by a syntax filter and SVMs

机译:通过语法过滤器和SVM对SIP消息进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Session Initiation Protocol (SIP) is at the root of many sessions-based applications such as VoIP and media streaming that are used by a growing number of users and organizations. udThe increase of the availability and use of such applications calls for careful attention to the possibility of transferring malformed, incorrect, or malicious SIP messages as they can cause problems ranging from relatively innocuous disturbances to full blown attacks and frauds. udTo this end, SIP messages are analyzed to be classified as "good" or "bad" depending on whether this structure and content are deemed acceptable or not. udThis paper presents a classifier of SIP messages based on a two stage filter. udThe first stage uses a straightforward lexical analyzer to detect and remove all messages that are lexically incorrect with reference to the grammar that is defined by the protocol standard. udThe second stage uses a machine learning approach based on a Support Vector Machine (SVM) to analyze the structure of the remaining syntactically udcorrect messages in order to detect semantic anomalies which are deemed a strong indication of a possibly malicious message. udThe SVM "learns" the structure of the "good" and "bad" SIP messages through an initial training phase and the SVM thus configured correctly classifies messages produced by a synthetic generator and also "real" SIP messages that have been collected from the communication network at our institution. The preliminary results of such classification look very promising and are presented in the final section of this paper. ududA short version of this Technical Report appears in the proceedings of the IEEE Global Communications Conference (GLOBE-COM 2012), California, USA, December 3-7, 2012.
机译:会话发起协议(SIP)是许多基于会话的应用程序(例如VoIP和媒体流)的根源,越来越多的用户和组织都在使用它们。 ud这些应用程序的可用性和使用率的提高要求仔细注意传输格式错误,不正确或恶意的SIP消息的可能性,因为它们会引起从相对无害的干扰到全面的攻击和欺诈等问题。 ud为此,根据此结构和内容是否被认为可接受,将SIP消息分析为“好”或“坏”。 ud本文介绍了基于两级过滤器的SIP消息分类器。 ud第一阶段使用简单的词法分析器,以参考协议标准定义的语法来检测和删除所有词法不正确的消息。第二阶段,使用基于支持向量机(SVM)的机器学习方法来分析其余语法错误的消息的结构,以检测语义异常,这些语义异常被认为是对可能的恶意消息的有力指示。 udSVM通过初始训练阶段“学习”“好”和“坏” SIP消息的结构,这样配置的SVM可以正确分类合成生成器产生的消息以及从SVM收集的“真实” SIP消息。我们机构的通讯网络。这种分类的初步结果看起来很有希望,并在本文的最后一节中介绍。 ud ud本技术报告的简短版本出现在2012年12月3日至7日美国加利福尼亚州的IEEE全球通信会议(GLOBE-COM 2012)的会议记录中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号