首页> 外文OA文献 >Real Time Estimation of Potential Output and Output Gap for the Euro-Area : Comparing Production Function with Unobserved Components and SVAR Approaches
【2h】

Real Time Estimation of Potential Output and Output Gap for the Euro-Area : Comparing Production Function with Unobserved Components and SVAR Approaches

机译:欧元区潜在产出和产出缺口的实时估计:比较生产函数与未观察到的要素和SVAR方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a new version of the production function (PF) approach usually used for estimating the output gap of the euro area. Our version does not call for any (often imprecise) measure of the capital stock and improves the estimation of the trend total factor productivity. We asses this approach by comparing it with two other multivariate methods mostly used for output gap estimates, a multivariate unobserved components (MUC) model and a Structural Vector Auto-Regressive (SVAR) model. The comparison is conducted by relying on assessment criteria such as the concordance of the turning points chronology with a reference one, the inflation forecasting power and the real-time consistency of the estimates. Two contributions are achieved. Firstly, we take into account data revisions and their impact on the output gap estimates by using vintage datasets coming from the Euro Area Business Cycle (EABCN) Real-Time Data-Base (RTDB). Secondly, the PF approach, generally employed by policy-makers despite of its difficult implementation, is assessed. We thus improve on previous papers which limited their assessment on other multivariate methods, e.g. MUC or SVAR models. The different methods show different ranks in relation to the three criteria. This new PF estimate appears highly concordant with the reference chronology. Its forecasting power appears favourable only for the shortest horizon (1 month). Finally, the SVAR model appears more consistent in real-time.
机译:我们开发了生产函数(PF)方法的新版本,通常用于估算欧元区的产出缺口。我们的版本不需要对资本存量进行任何(通常是不精确的)度量,而是改善了对趋势全要素生产率的估计。我们通过将其与其他两种主要用于输出间隙估计的多元方法,多元不可观测成分(MUC)模型和结构矢量自回归(SVAR)模型进行比较来评估此方法。比较是依靠评估标准进行的,例如转折点的时间顺序与参考标准的一致性,通货膨胀的预测能力和估算的实时一致性。实现了两个贡献。首先,我们使用来自欧元区经济周期(EABCN)实时数据库(RTDB)的老式数据集,考虑了数据修订及其对产出缺口估计的影响。其次,评估了尽管决策者难以实施,但决策者普遍采用的PF方法。因此,我们对以前的论文进行了改进,从而限制了他们对其他多元方法的评估,例如MUC或SVAR模型。不同的方法相对于这三个标准显示出不同的等级。这个新的PF估计值与参考年表高度一致。它的预测能力仅在最短的期限(1个月)内才显示出优势。最后,SVAR模型实时性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号