首页> 外文OA文献 >Quality of Service Evaluation and Assessment Methods in Wireless Networks
【2h】

Quality of Service Evaluation and Assessment Methods in Wireless Networks

机译:无线网络中的服务质量评估和评估方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless networks are capable of facilitating a reliable multimedia communication. The ease they can be deployed is ideal for disaster management. The Quality of Service (QoS) for these networks is critical to their effectiveness. Evaluation of QoS in wireless networks provides information that supports their management. QoS evaluation can be performed in multiple ways and indicates how well applications are delivered. In this work, fuzzy c-means clustering (FCM) and Kohonen unsupervised neural networks were compared for their abilities to differentiate between Good, Average and Poor QoS for voice over IP (VoIP) traffic. Fuzzy inference system (FIS), linear regression and multilayer perceptron (MLP) were evaluated to quantify QoS for VoIP. FCM and Kohonen successfully classified VoIP traffic into three types representing Low, Medium, and High QoS. FIS, regression model and MLP combined the QoS parameters (i.e. delay, jitter, and percentage packet loss ratio) with information from the generated clusters and indicated the overall QoS.
机译:无线网络能够促进可靠的多媒体通信。它们易于部署,是灾难管理的理想选择。这些网络的服务质量(QoS)对于其有效性至关重要。无线网络中QoS的评估提供了支持其管理的信息。 QoS评估可以通过多种方式执行,并指示应用程序的交付情况。在这项工作中,对模糊c均值聚类(FCM)和Kohonen无监督神经网络的能力进行了比较,以区分IP语音(VoIP)流量的良好,平均和较差QoS。对模糊推理系统(FIS),线性回归和多层感知器(MLP)进行了评估,以量化VoIP的QoS。 FCM和Kohonen将VoIP流量成功分类为三种类型,分别表示低,中和高QoS。 FIS,回归模型和MLP将QoS参数(即延迟,抖动和丢包率百分比)与生成的群集中的信息相结合,并指出了整体QoS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号