首页> 外文OA文献 >Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems.
【2h】

Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems.

机译:响应阈值模型和随机学习自动机,用于多机器人系统中异构多任务分配的自协调。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
机译:本文着重于协调多个机器人的一般问题。更具体地说,它解决了自主机器人对异构专业任务的自选问题。在本文中,我们关注于一种特定的分布式或分散式方法,因为我们对一种分散式解决方案特别感兴趣,在这种解决方案中,机器人自身以自主方式自行选择特定任务,从而使所有现有任务得到最佳分配和执行。在这方面,我们建立了一个实验方案来解决相应的多任务分配问题,并通过应用响应阈值模型和学习基于自动机的概率算法,提出了使用两种不同方法的解决方案。我们评估了算法的鲁棒性,扰动了待处理负载的数量,以模拟机器人在估计待处理任务的实际数量以及随着时间动态生成负载时的错误。本文以对实验结果的批判性讨论作为结尾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号