首页> 外文OA文献 >Materials Research for HiPER Laser Fusion Facilities: Chamber Wall, Structural Material and Final Optics.
【2h】

Materials Research for HiPER Laser Fusion Facilities: Chamber Wall, Structural Material and Final Optics.

机译:HiPER激光聚变设施的材料研究:腔壁,结构材料和最终光学器件。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation
机译:欧洲HiPER项目旨在证明惯性聚变能量在未来二十年内的商业可行性。该目标需要针对不同应用的材料(例如,第一层墙,结构部件和最终光学器件)进行广泛的研发计划。在本文中,我们将讨论在HiPER框架下开展的活动,以针对不同领域的兴趣开展材料研究。燃烧室的第一壁必须以5-10 Hz的重复频率承受至少100 MJ的爆炸。如果使用直接驱动目标,则优选在真空下运行的干壁室。在这种情况下,壁的主要威胁来自离子。对于合理的低腔半径(5-10 m),正在研究基于W和C的新材料,例如工程表面和纳米结构材料。结构材料将受到高中子通量的影响,从而导致有害作用,例如膨胀。低活化高级钢以及新型纳米结构材料正在研究中。最终的光学镜片将无法承受爆炸产生的极端离子辐照脉冲。因此,正在研究缓解策略。此外,正在努力了解最佳条件,以最大程度地减少中子和伽马辐射引起的光学性能损失

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号