首页> 外文OA文献 >Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands.
【2h】

Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands.

机译:基于对象的半自动方法,用于在异类樟子松林分中利用激光雷达数据表征森林结构。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered (k-means algorithm) into forest structure types based on the DCHMdata within forest stands. Hypsographs of each polygon and field data validated the separability of structure types. In the study area, 112 polygons of Pinus sylvestris were segmented and classified into five forest structure types, ranging from high dense forest canopy (850 trees ha_1 and Lorey´ s height of 17.4 m) to scarce tree coverage (60 tree ha_1 and Lorey´ s height of 9.7 m). Our results indicate that the best variables for the definition and characterization of forest structure in these forests are the median and standard deviation (S.D.), both derived from lidar data. In these forest types, lidar median height and standard deviation (S.D.) varied from 15.8 m (S.D. of 5.6 m) to 2.6 m (S.D. of 4.5 m). The present approach could have an operational application in the inventory procedure and forest management plans.
机译:在本文中,我们提出了两种方法来表征西班牙中部森林中樟子松林分的结构。第一步是使用eCognition和从激光雷达数据得出的数字树冠高度模型(DCHM)划定林分。然后根据林分内的DCHMdata将多边形聚类(k-均值算法)为森林结构类型。每个多边形和场数据的曲线图验证了结构类型的可分离性。在研究区域中,樟子松的112个多边形被分割并分为五种森林结构类型,从高密林冠层(850棵ha_1和Lorey´s高度为17.4 m)到稀少的树木覆盖率(60棵ha_1和Lorey´s高度9.7 m)。我们的结果表明,这些森林中定义和表征森林结构的最佳变量是中位数和标准差(S.D.),两者均来自激光雷达数据。在这些森林类型中,激光雷达的中位高度和标准偏差(S.D.)从15.8 m(S.D.为5.6 m)到2.6 m(S.D.为4.5 m)不等。本方法可在清单程序和森林管理计划中有业务应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号