首页> 外文OA文献 >Derivation of generalized Camassa-Holm equations from Boussinesq-type equations
【2h】

Derivation of generalized Camassa-Holm equations from Boussinesq-type equations

机译:从Boussinesq型方程推导广义Camassa-Holm方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we derive generalized forms of the Camassa-Holm (CH) equation from a Boussinesq-type equation using a two-parameter asymptotic expansion based on two small parameters characterizing nonlinear and dispersiveudeffects and strictly following the arguments in the asymptotic derivation of the classical CH equation. The resulting equations generalize the CH equation in two different ways. The first generalization replaces the quadratic nonlinearity of the CH equation with a general power-type nonlinearity while the second one replaces the dispersive terms of the CH equation with fractional-type dispersive terms. In the absence of both higher-order nonlinearities and fractional-type dispersive effects, the generalized equations derived reduce to the classical CH equation that describes unidirectional propagation of shallow water waves. The generalizedudequations obtained are compared to similar equations available in the literature, and this leads to the observation that the present equations have not appeared in the literature.
机译:在本文中,我们基于两个代表非线性和色散 deeffects的小参数,并严格遵循以下公式的自变量的渐近展开式,使用两参数渐近展开式从Boussinesq型方程式导出Camassa-Holm(CH)方程的广义形式。经典的CH方程。所得方程以两种不同方式推广CH方程。第一种概括是用一般的幂型非线性代替CH方程的二次非线性,而第二种概括是用分数型色散项代替CH方程的色散项。在没有高阶非线性和分数型色散效应的情况下,导出的广义方程简化为描述浅水波单向传播的经典CH方程。将获得的广义不等式与文献中可用的类似方程式进行比较,这导致观察到目前的方程式尚未出现在文献中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号