首页> 外文OA文献 >Hidden Markov models as priors for regularized nonnegative matrix factorization in single-channel source separation
【2h】

Hidden Markov models as priors for regularized nonnegative matrix factorization in single-channel source separation

机译:隐马尔可夫模型作为单通道源分离中正则化非负矩阵分解的先验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new method to incorporate rich statistical priors, modeling temporal gain sequences in the solutions of nonnegative matrix factorization (NMF). The proposed method can be used for single-channel source separation (SCSS) applications. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical and temporal prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The Hidden Markov Model (HMM) is used as a log-normalized gains (weights) prior model for the NMF solution. The normalization makes the prior models energy independent. HMM is used as a rich model that characterizes the statistics of sequential data. The NMF solutions for the weights are encouraged to increase the log-likelihood with the trained gain prior HMMs while reducing the NMF reconstruction error at the same time.
机译:我们提出了一种新的方法来合并丰富的统计先验,在非负矩阵分解(NMF)的解决方案中对时间增益序列进行建模。所提出的方法可以用于单通道源分离(SCSS)应用。在基于NMF的SCSS中,NMF用于将观察到的混合信号的频谱分解为一组经过训练的基础向量的加权线性组合。在这项工作中,强制执行NMF分解权重,以考虑关于权重组合模式的统计和时间先验信息,训练后的基础向量可以为观察到的混合信号中的每个源共同接收权重组合模式。隐马尔可夫模型(HMM)用作NMF解决方案的对数归一化增益(权重)先验模型。归一化使得现有模型能量独立。 HMM用作描述连续数据统计信息的丰富模型。鼓励权重的NMF解决方案在训练有增益的HMM之前增加对数似然率,同时减少NMF重建误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号