首页> 外文OA文献 >The Combustion of Low Grade Fuels in Fluidised Bed Combustors
【2h】

The Combustion of Low Grade Fuels in Fluidised Bed Combustors

机译:流化床燃烧器中低级燃料的燃烧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global energy consumption is projected to increase the world over from 546 EJ in 2010 to an estimated 879 EJ in 2050 (Frei et al., 2013). Several factors contribute to this projected increase including growing global population, better quality of life globally, and continued electrification of services and products. Three serious issues arise from the increase in consumption and production, that is, fuel supply, and availability and increased anthropogenic emissions. To meet demand, developing countries, such as Pakistan, are investing in power generation research and technologies. Whilst a number of technologies are available, fluidised bed combustion (FBC) is an attractive technological option because of its ability to handle fuels with variable calorific content, moisture content, mineral content and high alkaline content. FBC offers reliable thermal output because of the large thermal mass (fluidised bed) associated with the method. This thesis set out to explore the possibility of using low grade fuels in FBC and investigate the impact the fuels have on agglomerate formation rates and combustion efficiencies.udTo explore the potential of FBC in the first experimental investigation presented in this thesis, a 350KW pilot scale FBC rig was used to perform a series of combustion experiments on ten Pakistani coal blends from the Northern Punjab salt rage coal seams. The coals had high sulphur and alkaline content and presented challenges in both combustion and emissions control. Operational variables including bed temperature, bed additives (limestone), sulphur: calcium fuel ratio, additive particle size and co-firing with wood biomass were employed to evaluate the effect of fuel blending, combustion and emissions optimisation. This thesis argues high SO2 emissions resulting from the combustion of high sulphur coals can be reduced in emission concentration when optimising operational variables. The high alkaline content, because of pyrite (FeS) concentrations in the fuel caused bed agglomeration and slagging in the beds. The investigation analyses the agglomerates and defines the mechanisms involved. This research allows for remedies and implementation choices when considering the coals application in full scale systems.udIt is not only coal which can be utilised. Further work investigated the effects of five different biomass fuels in FBC. Biomass can be classified as a CO2 neutral fuel as the CO2 released during combustion is relatively equal to the CO2 absorbed in the growth of the original plant. However, biomass is known to contain high concentrations of alkaline species such as potassium (K) and sodium (Na) which were shown in the literature to cause agglomeration. The biomasses were combusted in the FBC rig to evaluate the combustion, emissions, agglomerates, temperatures and pressure outputs associated with each fuel. Following tests the air distribution plate was modified to simulate both a uniform air distribution system and a non-uniform air distribution system. This allowed for comparisons of the fuels in a system with uniform air flows and non-uniform airflows/distribution which would be experienced in damaged systems. Thus, this thesis argues biomass is significant and relevant to industrial application and allowed for identification of significant chemical components in the agglomeration mechanisms of each fuel as well as establishing the performance of each fuel in variable systems.udIn order to understand the fundamental chemical and physiological makeup of the low-grade fuels it was necessary to conduct an extensive series of fuel characterisation. The fuel characterisation research undertaken yielded information as to the fuels energy content, chemical makeup, combustion characteristic and identify key components such as alkaline species associated with the negative mechanisms seen in pilot scale testing. In order to analyse the fuels x-ray fluorescence (XRF) was used. This technique identifies major and minor oxides in coal samples. However, as demonstrated in the fuel characterisation work, there were limitations, inaccuracies and repeatability issues when analysing low grade fuels with XRF. Thus, a significant effort was made to improve the sampling, ashing, XRF medium and normalisation process. The results of this research led to a more reliable XRF method for analysing low grade fuels and their bi-product of combustion which is applicable for any industry utilising these types of fuels and techniques.udThe final part of the investigations focused on the prediction of agglomeration and slagging tendencies of the fuels. This was done by applying the results seen in the pilot scale tests and the results of the fuel characterisation work with slagging indices and the application of a thermodynamic model (FACTSAGE). FACTSAGE can be used to predict slagging tendencies of the fuels by modelling chemical species released over temperature ranges. The results showed correlation between the theoretical results and the experimental resultsudTogether this research demonstrates the implications of using low-grade fuels in small scale FBC. This thesis explores how this research can then be used in full scale FBC operations. This thesis not only highlights the problems with using low grade fuels in FBC but suggests remedies and potential solutions to the problems based on the results from experimental data and FACTSAGE modelling. It also presents suggestions on how to continue development of the technology to reduce or avoid some of the difficulties in combusting low grade fuels.
机译:预计全球能源消耗量将从2010年的546 EJ增加到2050年的879 EJ(Frei等,2013)。导致这一预期增长的因素有很多,包括全球人口的增长,全球生活质量的提高以及服务和产品的持续电气化。消费和生产的增加带来了三个严重的问题,即燃料供应,供应和人为排放增加。为了满足需求,巴基斯坦等发展中国家正在投资于发电研究和技术。尽管有许多技术可用,但流化床燃烧(FBC)是一种有吸引力的技术选择,因为它能够处理发热量,水分,矿物质含量和高碱含量可变的燃料。由于与该方法相关的热质量大(流化床),FBC可提供可靠的热输出。本文着手探讨在FBC中使用低品位燃料的可能性,并研究燃料对结块形成速率和燃烧效率的影响。 ud在本论文首次进行的实验研究中,为了探索FBC的潜力,一项350KW的试验使用FBC规模的FBC钻机对来自旁遮普邦北部盐渍性煤层的十种巴基斯坦煤炭混合物进行了一系列燃烧实验。煤中的硫和碱含量很高,在燃烧和排放控制方面都面临挑战。操作变量包括床温,床添加剂(石灰石),硫:钙燃料比,添加剂颗粒大小以及与木材生物质的共烧被用来评估燃料混合,燃烧和排放优化的效果。本文认为,当优化操作变量时,可以降低高硫煤燃烧产生的高SO2排放量。高碱性含量是由于燃料中的黄铁矿(FeS)浓度导致床层结块和床层结渣。调查分析了这些团块并确定了涉及的机制。在考虑将煤应用于完整规模的系统中时,这项研究可以提供补救措施和实施选择。 ud不仅可以利用煤。进一步的工作研究了五种不同的生物质燃料在FBC中的作用。生物质可归类为二氧化碳中性燃料,因为燃烧过程中释放的二氧化碳与原始植物生长中吸收的二氧化碳相对相等。然而,已知生物质包含高浓度的碱性物质,例如钾(K)和钠(Na),这些物质在文献中已表明会引起团聚。在FBC装置中燃烧生物质以评估与每种燃料相关的燃烧,排放,团聚,温度和压力输出。在测试之后,对空气分配板进行了修改,以模拟均匀的空气分配系统和非均匀的空气分配系统。这允许比较在受损系统中会遇到的均匀气流和不均匀气流/分布的系统中的燃料。因此,本论文认为生物质具有重要意义,并且与工业应用相关,并且可以识别每种燃料的团聚机理中的重要化学成分,并确定每种燃料在可变系统中的性能。 ud为了了解基本化学和低级燃料的生理组成,有必要进行一系列广泛的燃料表征。进行的燃料特性研究得出了有关燃料的能量含量,化学组成,燃烧特性的信息,并确定了关键成分,例如与中试规模测试中发现的负面机理相关的碱性物质。为了分析燃料,使用了X射线荧光(XRF)。该技术可识别煤样品中的主要和次要氧化物。但是,正如燃料表征工作所证明的那样,使用XRF分析低级燃料时存在局限性,不准确性和可重复性问题。因此,为改善采样,灰化做出了巨大的努力。,XRF介质和规范化过程。这项研究的结果导致了一种用于分析低等级燃料及其燃烧副产物的更可靠的XRF方法,适用于使用这些类型的燃料和技术的任何行业。 ud研究的最后一部分着重于预测燃料的结块和结渣趋势。这是通过应用在中试规模测试中看到的结果,具有排渣指数的燃料表征工作的结果以及热力学模型(FACTSAGE)的应用来完成的。通过模拟在温度范围内释放的化学物质,FACTSAGE可用于预测燃料的结渣趋势。结果表明理论结果与实验结果之间具有相关性。 udg此研究共同证明了在小规模FBC中使用低等级燃料的意义。本文探讨了如何在大规模FBC操作中使用这项研究。本文不仅着重于在FBC中使用低级燃料的问题,而且还基于实验数据和FACTSAGE建模的结果,提出了针对这些问题的补救措施和潜在解决方案。它还提出了有关如何继续开发该技术的建议,以减少或避免燃烧低级燃料的一些困难。

著录项

  • 作者

    Chilton Stephen Lewis;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号