首页> 外文OA文献 >Learning to adapt in dialogue systems : data-driven models for personality recognition and generation.
【2h】

Learning to adapt in dialogue systems : data-driven models for personality recognition and generation.

机译:学会适应对话系统:用于个性识别和产生的数据驱动模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dialogue systems are artefacts that converse with human users in order to achieveudsome task. Each step of the dialogue requires understanding the user's input, decidingudon what to reply, and generating an output utterance. Although there areudmany ways to express any given content, most dialogue systems do not take linguisticudvariation into account in both the understanding and generation phases,udi.e. the user's linguistic style is typically ignored, and the style conveyed by theudsystem is chosen once for all interactions at development time. We believe thatudmodelling linguistic variation can greatly improve the interaction in dialogue systems,udsuch as in intelligent tutoring systems, video games, or information retrievaludsystems, which all require specific linguistic styles. Previous work has shown thatudlinguistic style affects many aspects of users' perceptions, even when the dialogueudis task-oriented. Moreover, users attribute a consistent personality to machines,udeven when exposed to a limited set of cues, thus dialogue systems manifest personalityudwhether designed into the system or not. Over the past few years, psychologistsudhave identified the main dimensions of individual differences in humanudbehaviour: the Big Five personality traits. We hypothesise that the Big Five provideuda useful computational framework for modelling important aspects of linguisticudvariation. This thesis first explores the possibility of recognising the user's personalityudusing data-driven models trained on essays and conversational data. We thenudtest whether it is possible to generate language varying consistently along eachudpersonality dimension in the information presentation domain. We present PERSONAGE:uda language generator modelling findings from psychological studies toudproject various personality traits. We use PERSONAGE to compare various generationudparadigms: (1) rule-based generation, (2) overgenerate and select and (3)udgeneration using parameter estimation models-a novel approach that learns toudproduce recognisable variation along meaningful stylistic dimensions without theudcomputational cost incurred by overgeneration techniques. We also present theudfirst human evaluation of a data-driven generation method that projects multipleudstylistic dimensions simultaneously and on a continuous scale.
机译:对话系统是与人类用户交谈以完成繁琐任务的人工制品。对话的每个步骤都需要了解用户的输入,决定要回复的内容并生成输出语音。尽管有很多方法可以表达任何给定的内容,但是大多数对话系统在理解和生成阶段都没有考虑语言/语言变化。通常忽略用户的语言风格,并且在开发时为所有交互选择一次由 udsystem传达的风格。我们认为对语言变异进行建模可以极大地改善对话系统中的交互,例如在智能辅导系统,视频游戏或信息检索 uds系统中,这些都需要特定的语言风格。以前的工作表明,语言风格会影响用户感知的许多方面,即使对话是面向任务的。此外,用户即使在受到有限提示的情况下,也始终将机器的个性归因于机器,因此对话系统是否表现出个性(无论是否设计在系统中)。在过去的几年中,心理学家已经确定了人类行为中个体差异的主要方面:五大人格特质。我们假设“五大”提供了有用的计算框架,可用于对语言变异的重要方面进行建模。本文首先探讨了识别用户个性的可能性使用在论文和会话数据上训练的数据驱动模型。然后,我们 udtest是否有可能生成沿信息呈现域中每个 udpersonality维度一致变化的语言。我们介绍PERSONAGE: uda语言生成器从心理学研究中建模的结果,以 udproject各种人格特质。我们使用PERSONAGE来比较各种生成 ud范式:(1)基于规则的生成,(2)使用参数估计模型进行过生成和选择,以及(3) udgeneration-一种新颖的方法,可学习沿有意义的样式维度生成可识别的变化而无需过代技术所产生的计算成本。我们还介绍了对数据驱动的生成方法的人类第​​一评价,该方法同时且连续地投影了多个维度。

著录项

  • 作者

    Mairesse Francois;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号