首页> 外文OA文献 >Pairwise geometric histograms for object recognition : developments and analysis.
【2h】

Pairwise geometric histograms for object recognition : developments and analysis.

机译:成对几何直方图用于对象识别:发展和分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the fundamental problems in the field of computer vision is the task of classifyingudobjects, which are present in an image or sequence of images, based on their appearance.udThis task is commonly referred to as the object recognition problem. A system designed toudperform this task must be able to learn visual cues such as shape, colour and texture fromudexamples of objects presented to it. These cues are then later used to identify examples ofudthe known objects in previously unseen scenes. The work presented in this thesis is basedudon a statistical representation of shape known as a pairwise geometric histogram whichudhas been demonstrated by other researchers in 2-dimensional object recognition tasks. Anudanalysis of the performance of recognition based on this representation has been conductedudand a number of contributions to the original recognition algorithm have been made. Anudimportant property of an object recognition system is its scalability. This is the. abilityudof the system to continue performing as the number of known objects is increased. Theudanalysis of the recognition algorithm presented here considers this issue by relating theudclassification error to the number of stored model objects. An estimate is also made of theudnumber of objects which can be represented uniquely using geometric histograms. One ofudthe main criticisms of the original recognition algorithm based on geometric histogramsudwas the inability to recognise objects at different scales. An algorithm is presented hereudthat is able to recognise objects over a range of scale using the geometric histogramudrepresentation. Finally, a novel pairwise geometric histogram representation for arbitraryudsurfaces has been proposed. This inherits many of the advantages of the 2-dimensionaludshape descriptor but enables recognition of 3-dimensional object from arbitrary viewpoints.
机译:计算机视觉领域的基本问题之一是根据图像的外观对存在于图像或图像序列中的对象进行分类的任务。该任务通常称为对象识别问题。设计为执行此任务的系统必须能够从呈现给它的对象的示例中学习视觉提示,例如形状,颜色和纹理。这些提示随后可用于识别以前看不见的场景中已知物体的示例。本论文中的工作基于对形状的统计表示,称为成对几何直方图,其他研究人员已在二维对象识别任务中对此进行了证明。对基于这种表示的识别性能进行了分析,并对原始识别算法做出了许多贡献。对象识别系统的一个重要属性是它的可伸缩性。这是。随着已知对象数量的增加,系统继续执行的能力。此处介绍的识别算法的 udanalysis通过将 udclassification误差与存储的模型对象的数量相关联来考虑此问题。还对可以使用几何直方图唯一表示的对象数量进行估算。对基于几何直方图的原始识别算法的主要批评之一是无法识别不同比例的物体。这里介绍一种算法 ud,该算法能够使用几何直方图 udrepresentation在一定范围内识别对象。最后,提出了一种新颖的成对的几何直方图表示形式。这继承了二维 udshape描述符的许多优点,但可以从任意角度识别3维对象。

著录项

  • 作者

    Ashbrook Anthony P.;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号