首页> 外文OA文献 >Sequential Monte Carlo Methods for Crowd and Extended Object Tracking and Dealing with Tall Data
【2h】

Sequential Monte Carlo Methods for Crowd and Extended Object Tracking and Dealing with Tall Data

机译:人群和扩展对象跟踪和高数据处理的顺序蒙特卡洛方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Bayesian methodology is able to deal with a number of challenges in object tracking, especially with uncertainties in the system dynamics and sensor characteristics. However, model complexities can result in non-analytical expressions which require computationally cumbersome approximate solutions. In this thesis computationally efficient approximate methods for object tracking with complex models are developed. ududOne such complexity is when a large group of objects, referred to as a crowd, is required to be tracked. A crowd generates multiple measurements with uncertain origin. Two solutions are proposed, based on a box particle filtering approach and a convolution particle filtering approach. Contributions include a theoretical derivation for the generalised likelihood function for the box particle filter, and an adaptive convolution particle filter able to resolve the data association problem without the measurement rates. The performance of the two filters is compared over a realistic scenario for a large crowd of pedestrians.ududExtended objects also generate a variable number of multiple measurements. In contrast with point objects, extended objects are characterised with their size or volume. Multiple object tracking is a notoriously challenging problem due to complexities caused by data association. An efficient box particle filter method for multiple extended object tracking is proposed, and for the first time it is shown how interval based approaches can deal efficiently with data association problems and reduce the computational complexity of the data association. The performance of the method is evaluated on real laser rangefinder data.ududAdvances in digital sensors have resulted in systems being capable of accumulating excessively large volumes of data. Three efficient Bayesian inference methods are developed for object tracking when excessively large numbers of measurements may otherwise cause standard algorithms to be inoperable. The underlying mechanics of these methods are adaptive subsampling and the expectation propagation algorithm.
机译:贝叶斯方法能够处理对象跟踪中的许多挑战,尤其是系统动力学和传感器特性的不确定性。但是,模型复杂性可能会导致非分析表达式,这需要计算繁琐的近似解。本文提出了一种计算有效的复杂模型目标跟踪的有效方法。 ud ud这样的复杂性是当需要跟踪称为“人群”的一大组对象时。人群会产生多个不确定来源的测量值。提出了两种基于盒粒子滤波和卷积粒子滤波的解决方案。贡献包括用于盒粒子滤波器的广义似然函数的理论推导,以及能够解决数据关联问题而无需测量速率的自适应卷积粒子滤波器。在大量行人的实际情况下,比较了这两个滤波器的性能。 ud ud扩展对象还生成可变数量的多次测量。与点对象相反,扩展对象的特征是其大小或体积。由于数据关联导致的复杂性,多对象跟踪是一个极富挑战性的问题。提出了一种用于多个扩展目标跟踪的有效盒式粒子滤波方法,并首次展示了基于区间的方法如何有效处理数据关联问题并降低数据关联的计算复杂性。该方法的性能是根据真实的激光测距仪数据评估的。 ud ud数字传感器的先进性已导致系统能够累积过多的数据。当过多的测量可能会导致标准算法无法使用时,开发了三种有效的贝叶斯推理方法来进行对象跟踪。这些方法的基本原理是自适应子采样和期望传播算法。

著录项

  • 作者

    De Freitas Allan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号