首页> 外文OA文献 >Signal separation of musical instruments: simulation-based methods for musical signal decomposition and transcription
【2h】

Signal separation of musical instruments: simulation-based methods for musical signal decomposition and transcription

机译:乐器的信号分离:基于模拟的音乐信号分解和转录方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents techniques for the modelling of musical signals, with particular regard to monophonic and polyphonic pitch estimation. Musical signals are modelled as a set of notes, each comprising of a set of harmonically-related sinusoids. An hierarchical model is presented that is very general and applicable to any signal that can be decomposed as the sum of basis functions. Parameter estimation is posed within a Bayesian framework, allowing for the incorporation of prior information about model parameters. The resulting posterior distribution is of variable dimension and so reversible jump MCMC simulation techniques are employed for the parameter estimation task. The extension of the model to time-varying signals with high posterior correlations between model parameters is described. The parameters and hyperparameters of several frames of data are estimated jointly to achieve a more robust detection. A general model for the description of time-varying homogeneous and heterogeneous multiple component signals is developed, and then applied to the analysis of musical signals. The importance of high level musical and perceptual psychological knowledge in the formulation of the model is highlighted, and attention is drawn to the limitation of pure signal processing techniques for dealing with musical signals. Gestalt psychological grouping principles motivate the hierarchical signal model, and component identifiability is considered in terms of perceptual streaming where each component establishes its own context. A major emphasis of this thesis is the practical application of MCMC techniques, which are generally deemed to be too slow for many applications. Through the design of efficient transition kernels highly optimised for harmonic models, and by careful choice of assumptions and approximations, implementations approaching the order of realtime are viable.
机译:本文提出了音乐信号建模的技术,特别是关于单音和复音音高估计的技术。音乐信号被建模为一组音符,每个音符都包括一组谐波相关的正弦曲线。提出了一种层次模型,该模型非常笼统,适用于可以分解为基函数之和的任何信号。参数估计在贝叶斯框架内进行,从而可以合并有关模型参数的先验信息。由此产生的后验分布具有可变的维数,因此可逆的跳跃MCMC仿真技术被用于参数估计任务。描述了模型的扩展到模型参数之间具有高后验相关性的时变信号。联合估计几帧数据的参数和超参数,以实现更可靠的检测。建立了描述时变均质和异质多分量信号的通用模型,然后将其应用于音乐信号的分析。强调了高级音乐和感性心理知识在模型制定中的重要性,并提请注意用于处理音乐信号的纯信号处理技术的局限性。格式塔心理分组原则激励分层信号模型,并且在每个组件建立自己的上下文的感知流方面考虑组件的可识别性。本文的主要重点是MCMC技术的实际应用,通常认为MCMC技术对于许多应用来说太慢了。通过设计针对谐波模型进行了高度优化的高效过渡内核,并通过谨慎选择假设和近似值,接近实时性的实现是可行的。

著录项

  • 作者

    Walmsley Paul Jospeh;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号