首页> 外文OA文献 >Development and Qualification of an FPGA-Based Multi-Processor System-on-Chip On-Board Computer for LEO Satellites
【2h】

Development and Qualification of an FPGA-Based Multi-Processor System-on-Chip On-Board Computer for LEO Satellites

机译:基于FPGA的LEO卫星多处理器片上系统车载计算机的开发和认证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Developing small satellites for scientific and commercial purposes is emerging rapidly in the last decade. The future is still expected to carry more challenging services and designs to fulfill the growing needs for space based services. Nevertheless, there exists a big challenge in developing cost effective and highly efficient small satellites yet with accepted reliability and power consumption that is adequate to the mission capabilities. This challenge mandates the use of the recent developments in digital design techniques and technologies to strike the required balance between the four basic parameters: 1) Cost, 2) Performance, 3) Reliability and 4) Power consumption. This balance becomes even more stringent and harder toreach when the satellite mass reduces significantly. Mass reduction puts strict constraints on the power system in terms of the solar panels and the batteries. That fact creates the need to miniaturize the design of the subsystems as much as possible which can be viewed as the fifth parameter in the design balance dilemma. At Kyuhsu Institute of Technology-Japan we are investigating the use of SRAMbased Field Programmable Gate Arrays (FPGA) in building: 1) High performance, 2)Low cost, 3) Moderate power consumption and 4) Highly reliable Muti-Processor System-on-Chip (MPSoC) On-Board Computers (OBC) for future space missions and applications. This research tries to investigate how commercial grade SRAMbased FPGAs would perform in space and how to mitigate them against the space environment. Our methodology to answer that question depended on following formal design procedure for the OBC according to the space environment requirements then qualifying the design through extensive testing. We developed theMPSoC OBC with 4 complete embedded processor systems. The Inter Processor Communication (IPC) takes place through hardware First-In-First-Out (FIFO) mailboxes. One processor acts as the system master controller which monitors the operation and controls the reset and restore of the system in case of faults and the other three processors form Triple Modular Redundancy (TMR) fault tolerance architecture with each other. We used Dynamic Partial Reconfiguration (DPR) in scrubbing the configuration memory frames and correcting the faults that might exist. The system is implemented using a Virtex-5 LX50 commercial grade FPGA from Xilinx. The research also qualifies the design in the ground-simulated space environment conditions. We tested the implemented MPSoC OBC in Thermal Vacuum Chambers (TVC) at the Center of Nano-Satellite Testing (CeNT) at Kyushu Institute of Technology. Also we irradiated the design with proton accelerated beam at 65 MeV with fluxes of 10e06 and 3e06 particle/cm2/sec at the Takasaki Advanced Radiation Research Institute (TARRI).The TVC test results showed that the FPGA design exceeded the limits of normal operation for the commercial grade package at about 105 C°. Therefore, we mitigated the package using: 1) heat sink, 2) dynamic temperature management through operating frequency reduction from 100 MHz to 50 MHz and 3) reconfiguration to reduce the number of working processors to 2 instead of 4 by replacing the spaceredundancy TMR with time-redundancy TMR during the sunlight section of the orbit. The mitigation proved to be efficient and it even reduced the temperature from 105 C° to about 66 C° when the heat sink, frequency reduction, and reconfiguration techniques were used together.The radiation and the fault injection tests showed that mitigating the FPGA configuration frames through scrubbing are efficient when Single Bit Upsets (SBU) are recorded. Multiple Bit Upsets (MBU) are not well mitigated using the scrubbing with Single Error Correction Double Error Detection (SECDED) technique and the FPGA needs to be totally reset and reloaded when MBUs are detected in its configuration frames. However, as MBUs occurrence in space is very seldom and rare compared to SBUs, we consider that SECDED scrubbing is very efficient in decreasing the soft error rate and increasing the reliability of having error-free bitstreams. The reliability was proven to be at 0.9999 when the scrubbing rate was continuous at a period of 7.1 msec between complete scans of the FPGA bitstream. In the proton radiation tests we managed to develop a new technique to estimate the static cross section using internal scrubbing only without using external monitoring, control and scrubbing device. Fault injection was used to estimate the dynamic cross section in a cost effective alternative for estimating it through radiation test.The research proved through detailed testing that the 65 nm commercial grade SRAM-based FPGA can be used in future space missions. The MPSoC OBC design achieved an adequate balance between the performance, power, mass, and reliability requirements. Extensive testing and applying carefully crafted mitigation techniques were the key points to verify and validate the MPSoC OBC design. In-orbit validation through a scientific demonstration mission would be the next step for the future research.
机译:在过去的十年中,发展用于科学和商业目的的小型卫星正在迅速兴起。未来仍有望携带更具挑战性的服务和设计,以满足对太空服务不断增长的需求。然而,在开发具有成本效益和高效的小型卫星,同时具有足以满足任务能力的公认的可靠性和功耗方面,仍然存在巨大挑战。这项挑战要求使用数字设计技术的最新发展来在四个基本参数之间达到所需的平衡:1)成本,2)性能,3)可靠性和4)功耗。当卫星质量显着降低时,这种平衡变得更加严格且难以达到。质量的降低在太阳能电池板和电池方面对电力系统施加了严格的限制。这个事实导致需要尽可能地最小化子系统的设计,这可以看作是设计平衡难题中的第五个参数。在日本久住技术学院,我们正在研究在建筑物中使用基于SRAM的现场可编程门阵列(FPGA):1)高性能,2)低成本,3)中等功耗以及4)高度可靠的Muti-Processor System-on芯片(MPSoC)车载计算机(OBC),用于未来的太空任务和应用。这项研究试图研究基于商业级SRAM的FPGA在太空中的性能,以及如何在太空环境下降低功耗。我们解决这个问题的方法取决于根据空间环境要求遵循OBC的正式设计程序,然后通过大量测试对设计进行鉴定。我们开发了具有4个完整嵌入式处理器系统的MPSoC OBC。处理器间通信(IPC)通过硬件先进先出(FIFO)邮箱进行。一个处理器充当系统主控制器,在发生故障时监视系统的运行并控制系统的重置和恢复,而其他三个处理器则彼此形成三重模块冗余(TMR)容错体系结构。我们使用动态部分重配置(DPR)清理了配置内存帧并纠正了可能存在的故障。该系统使用Xilinx的Virtex-5 LX50商业级FPGA来实现。该研究还验证了在地面模拟的空间环境条件下的设计资格。我们在九州技术学院的纳米卫星测试中心(CeNT)的热真空室(TVC)中测试了已实施的MPSoC OBC。我们还在高崎高级辐射研究所(TARRI)用65 MeV的质子加速束辐照了设计,其通量分别为10e06和3e06粒子/cm2/sec.TVC测试结果表明,FPGA设计超出了常规设计的极限。商业级包装,温度约为105°C。因此,我们使用以下方法减轻了封装的负担:1)散热器,2)通过将工作频率从100 MHz降低至50 MHz来进行动态温度管理,以及3)通过用以下方式代替间隔冗余TMR将工作处理器的数量减少至2个而不是4个轨道日照期间的时间冗余TMR。事实证明,这种缓解措施是有效的,并且在将散热器,降低频率和重新配置技术结合使用时,它甚至可以将温度从105 C°降至约66 C°。辐射和故障注入测试表明,缓解了FPGA配置框架记录单位翻转(SBU)时,通过擦洗是有效的。使用具有单错误校正双错误检测(SECDED)技术的清理不能很好地缓解多位翻转(MBU),并且当在其配置帧中检测到MBU时,FPGA需要完全复位并重新加载。但是,由于与SBU相比,MBU在空间中很少出现且很少见,因此我们认为SECDED清理在降低软错误率和增加具有无错误比特流的可靠性方面非常有效。当在FPGA比特流完整扫描之间的7.1 ms的时间内连续进行清除速率时,已证明可靠性为0.9999。在质子辐射测试中,我们设法开发了一种仅使用内部擦洗而无需使用外部监视,控制和擦洗设备即可估算静态横截面的新技术。故障注入被用来估算动态截面,这是通过辐射测试估算动态截面的一种经济有效的方法。研究通过详细测试证明,基于65 nm商业级SRAM的FPGA可以用于未来的太空飞行。 MPSoC OBC设计在性能,功率,质量之间实现了适当的平衡以及可靠性要求。广泛的测试和精心设计的缓解技术是验证和验证MPSoC OBC设计的关键。通过科学演示任务进行在轨验证将是未来研究的下一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号