首页> 外文OA文献 >Uncertainties in global crop model frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates
【2h】

Uncertainties in global crop model frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates

机译:全球作物模型框架的不确定性:品种分布,作物管理和土壤处理对作物产量估计的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global gridded crop models (GGCMs) combine field-scale agronomic models or sets of plant growth algorithms with gridded spatial input data to estimate spatially explicit crop yields 40 and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different bio-physical models, setups, and input data. While algorithms have been in the focus of recent GGCM comparisons, this study investigates differences in maize and wheat yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model 45 Intercomparison (GGCMI) project. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, geographic distribution of cultivars, and selection of subroutines e.g. for the estimation of potential evapotranspiration or soil erosion. The analyses reveal long-term trends and inter-annual yield variability in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. Absolute yield levels as well depend not only on nutrient supply but 50 also on the parameterization and distribution of crop cultivars. All GGCMs show an intermediate performance in reproducing reported absolute yield levels or inter-annual dynamics. Our findings suggest that studies focusing on the evaluation of differences in bio-physical routines may require further harmonization of input data and management assumptions in order to eliminate background noise resulting from differences in model setups. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions 55 in setups appears the best solution for bracketing such uncertainties as long as comprehensive global datasets taking into account regional differences in crop management, cultivar distributions and coefficients for parameterizing agro-environmental processes are lacking. Finally, we recommend improvements in the documentation of setups and input data of GGCMs in order to allow for sound interpretability, comparability and reproducibility of published results.
机译:全球网格化作物模型(GGCM)将田间规模的农艺模型或植物生长算法集与网格化的空间输入数据相结合,以估算空间尺度上明确的作物产量40和全球范围内的农业外部性。 GGCM输出的差异是由于使用了不同的生物物理模型,设置和输入数据而引起的。尽管算法一直是最近GG​​CM比较的重点,但本研究基于参与AgMIP全球网格化作物模型的公共领域田间规模模型环境政策综合气候(EPIC),调查了五个GGCM的玉米和小麦单产估计差异45比对(GGCMI)项目。尽管使用相同的作物模型,但GGCM在模型版本,输入数据,管理假设,参数化,品种的地理分布以及子程序选择等方面有所不同。用于估计潜在的蒸散或土壤侵蚀。分析显示,基于EPIC的GGCM中的长期趋势和年际产量变异性对土壤参数化和作物管理高度敏感。绝对单产水平不仅取决于养分供应,而且还取决于作物品种的参数设置和分布,50。所有GGCM在复制报告的绝对产量水平或年际动态方面均表现出中等水平。我们的发现表明,专注于评估生物物理程序差异的研究可能需要进一步统一输入数据和管理假设,以消除因模型设置差异而产生的背景噪声。对于农业影响评估,在设置中使用GGCM集合及其广泛不同的假设55似乎是解决此类不确定性的最佳解决方案,只要综合的全球数据集考虑了作物管理的区域差异,品种分布和对农业环境过程进行参数化的系数缺乏。最后,我们建议对GGCM的设置和输入数据的文档进行改进,以确保已发布结果的合理解释性,可比性和可再现性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号