首页> 外文OA文献 >Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows
【2h】

Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows

机译:稳态不可压缩粘性流的随机有限差分格子玻尔兹曼方法

摘要

With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncertainty as generating a new dimension and the solution as dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial chaos system, and the coefficients in this representation are determined through a Galerkin approach. This approach provides an accurate representation even when only a small number of terms are used in the spectral expansion; consequently, saving in computational resource can be realized compared to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltzmann method (FDLBM) that provides a convenient algorithm for setting the boundary condition allows the flow of Newtonian and non-Newtonian fluids, with and without external body forces to be simulated with ease. Also, the inherent compressibility effect in the conventional lattice Boltzmann method, which might produce significant errors in some incompressible flow simulations, is eliminated. As such, the FDLBM together with an efficient UQ method can be used to treat incompressible flows with built in uncertainty, such as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic numerical solver for steady incompressible viscous flows by combining the FDLBM with a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden expansion flows are carried out.
机译:随着最先进的计算机的出现和它们的快速可用性,开发有效的不确定性量化(UQ)方法以减少用于模拟具有不完整知识和数据的复杂系统的数值模型的复杂性的时机已经成熟。频谱随机有限元方法(SSFEM)是广泛使用的UQ方法之一,它认为不确定性会产生新的维数,而解决方案则取决于该维数。然后根据多项式混沌系统寻求沿新维的收敛扩展,并且通过Galerkin方法确定该表示形式的系数。即使在频谱扩展中仅使用少量术语时,该方法也可以提供准确的表示。因此,与蒙特卡洛(MC)方案相比,可以节省计算资源。有限差分晶格玻尔兹曼方法(FDLBM)的最新开发提供了一种方便的算法来设置边界条件,从而可以轻松模拟具有和不具有外部力的牛顿流体和非牛顿流体的流动。而且,消除了传统点阵玻尔兹曼方法中固有的可压缩性效应,这种效应在某些不可压缩的流动模拟中可能会产生重大误差。这样,FDLBM与有效的UQ方法一起可用于处理不确定性无法压缩的血流,例如狭窄动脉的血流。本文的目的是通过将FDLBM与SSFEM相结合,开发用于稳定不可压缩粘性流的随机数值求解器。针对通道/双通道,从动腔和突然的膨胀流的MC解决方案进行了验证。

著录项

  • 作者

    Fu SC; So RMC; Leung WWF;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号