首页> 外文OA文献 >Squared Extrapolation Methods (SQUAREM): A New Class of Simple and Efficient Numerical Schemes for Accelerating the Convergence of the EM Algorithm
【2h】

Squared Extrapolation Methods (SQUAREM): A New Class of Simple and Efficient Numerical Schemes for Accelerating the Convergence of the EM Algorithm

机译:平方外推法(SQUAREM):简化EM算法收敛性的一类新的简单有效数值方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.
机译:通过利用定点迭代和外推方法之间的联系,我们推导出了一类新的迭代方案,用于加速EM算法的收敛。首先,我们提出了一步迭代方案的一般表述,它是通过外推法循环获得的。然后,我们对单步方案求平方以获得新的方法类,我们将其称为SQUAREM。对一个单步迭代方案求平方就是在外推方法的每个周期内简单地应用两次。在此,出于两个原因,我们将重点放在一阶或秩一外推方法上:(1)简单性和(2)计算效率。特别是,我们研究了两种一阶外推方法,即降秩外推(RRE1)和最小多项式外推(MPE1)。新方案的收敛性(单步和平方)相对于剩余范数是非单调的。像EM算法一样,一阶单步和SQUAREM方案是线性收敛的,但是它们的收敛速度更快。我们通过五个不同的示例证明了一阶SQUAREM方案SqRRE1和SqMPE1在加速EM算法方面的有效性。在计算效率方面,SQUAREM方案也显示出远远优于其一站式RRE1和MPE1。由于停滞和接近击穿的数值问题,所提出的外推方案可能会失败。我们已经开发了一种新的混合迭代方案,该方案结合了RRE1和MPE1方案,从而克服了停滞和接近击穿的问题。基于我们的数值实验,平方的一阶混合方案SqHyb1作为选择的迭代方案出现。它结合了SqMPE1的快速收敛性(同时避免了接近崩溃)和SqRRE1的稳定性(同时避免了停滞)。 SQUAREM方法可以很容易地合并到现有的EM算法中。他们只需要执行基本的EM步骤,就不需要任何其他辅助量,例如完整的数据记录似然度,其梯度或粗麻布。在具有大量参数的问题中,以及在统计模型复杂,EM算法速度慢且每个EM步骤在计算上都需要的问题中,它们是一个有吸引力的选择。

著录项

  • 作者

    Varadhan Ravi; Roland Ch.;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号