首页> 外文OA文献 >A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid
【2h】

A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

机译:具有非牛顿流体的曲面到饱和多孔介质的双扩散非稳态自由对流的有限差分格式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
机译:在本文中,提出了一种有限差分方案,以解决传热和传质从等温曲面向非牛顿流体饱和的多孔介质传递的不稳定问题。曲面保持恒温,并且使用幂律模型对非牛顿流体进行建模。显式有限差分法用于同时求解动量,能量和浓度方程。检查显式方案的一致性,并为每个方程确定稳定性条件。边界层和Boussinesq近似已被合并。对进入问题的各种参数进行了数值计算。速度,温度和浓度曲线以图形方式显示。发现随着时间趋于无穷大,在表中输入的壁面剪切力,传热系数和浓度梯度的值接近稳态值。

著录项

  • 作者

    El-Amin Mohamed; Sun Shuyu;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号