首页> 外文OA文献 >Robust Visual Tracking Via Consistent Low-Rank Sparse Learning
【2h】

Robust Visual Tracking Via Consistent Low-Rank Sparse Learning

机译:通过一致的低排名稀疏学习实现强大的视觉跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Object tracking is the process of determining the states of a target in consecutive video frames based on properties of motion and appearance consistency. In this paper, we propose a consistent low-rank sparse tracker (CLRST) that builds upon the particle filter framework for tracking. By exploiting temporal consistency, the proposed CLRST algorithm adaptively prunes and selects candidate particles. By using linear sparse combinations of dictionary templates, the proposed method learns the sparse representations of image regions corresponding to candidate particles jointly by exploiting the underlying low-rank constraints. In addition, the proposed CLRST algorithm is computationally attractive since temporal consistency property helps prune particles and the low-rank minimization problem for learning joint sparse representations can be efficiently solved by a sequence of closed form update operations. We evaluate the proposed CLRST algorithm against 14 state-of-the-art tracking methods on a set of 25 challenging image sequences. Experimental results show that the CLRST algorithm performs favorably against state-of-the-art tracking methods in terms of accuracy and execution time.
机译:对象跟踪是基于运动和外观一致性的属性确定连续视频帧中目标状态的过程。在本文中,我们提出了一个基于粒子过滤器框架进行跟踪的一致的低秩稀疏跟踪器(CLRST)。通过利用时间一致性,提出的CLRST算法自适应地修剪并选择候选粒子。通过使用字典模板的线性稀疏组合,所提出的方法通过利用潜在的低秩约束来联合学习与候选粒子对应的图像区域的稀疏表示。另外,由于时间一致性特性有助于修剪粒子,并且通过一系列闭合形式更新操作可以有效解决学习联合稀疏表示的低秩最小化问题,因此所提出的CLRST算法在计算上具有吸引力。我们针对25个具有挑战性的图像序列集上的14种最新跟踪方法评估了提出的CLRST算法。实验结果表明,CLRST算法在准确性和执行时间方面优于最新的跟踪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号