首页> 外文OA文献 >Ni-M-O (M=Sn, Ti and W) catalysts prepared from dry mixing method for oxidative dehydrogenation of ethane
【2h】

Ni-M-O (M=Sn, Ti and W) catalysts prepared from dry mixing method for oxidative dehydrogenation of ethane

机译:用干混法制备乙烷氧化脱氢的Ni-M-O(M = Sn,Ti和W)催化剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new generation of Ni-Sn-O, Ni-Ti-O, and Ni-W-O catalysts has been prepared by a solid state grinding method. In each case the doping metal varied from 2.5% to 20%. These catalysts exhibited higher activity and selectivity for ethane oxidative dehydrogenation (ODH) than conventionally prepared mixed oxides. Detailed characterisation was achieved using XRD, N2 adsorption, H2-TPR, SEM, TEM, and HAADF-STEM in order to study the detailed atomic structure and textural properties of the synthesized catalysts. Two kinds of typical structures are found in these mixed oxides, which are (major) “NixMyO” (M = Sn, Ti or W) solid solution phases (NiO crystalline structure with doping atom incorporated in the lattice) and (minor) secondary phases (SnO2, TiO2 or WO3). The secondary phase exists as a thin layer around small “NixMyO” particles, lowering the aggregation of nanoparticles during the synthesis. DFT calculations on the formation energies of M-doped NiO structures (M = Sn, Ti, W) clearly confirm the thermodynamic feasibility of incorporating these doping metals into NiO struture. The incorporation of doping metals into the NiO lattice decreases the number of holes (h+) localized on lattice oxygen (O2- + h+ ➔ O●-), which is the main reason for the improved catalytic performance (O●- is known to favor complete ethane oxidation to CO2). The high efficiency of ethylene production achieved in these particularly prepared mixed oxide catalysts indicates that the solid grinding method could serve as a general and practical approach for the preparation of doped NiO based catalysts.
机译:已经通过固态研磨法制备了新一代的Ni-Sn-O,Ni-Ti-O和Ni-W-O催化剂。在每种情况下,掺杂金属的含量从2.5%到20%不等。与常规制备的混合氧化物相比,这些催化剂对乙烷氧化脱氢(ODH)表现出更高的活性和选择性。为了研究合成催化剂的详细原子结构和结构性质,使用XRD,N2吸附,H2-TPR,SEM,TEM和HAADF-STEM进行了详细的表征。在这些混合氧化物中发现两种典型的结构,分别是(主要)“ NixMyO”(M = Sn,Ti或W)固溶相(晶格中掺有掺杂原子的NiO晶体结构)和(次要)次级相(SnO2,TiO2或WO3)。次生相以小的“ NixMyO”颗粒周围的薄层存在,从而降低了合成过程中纳米颗粒的聚集。 D掺杂M掺杂NiO结构(M = Sn,Ti,W)形成能的DFT计算清楚地证实了将这些掺杂金属掺入NiO结构的热力学可行性。在NiO晶格中掺入掺杂金属可减少位于晶格氧(O2- + h +➔O●-)上的空穴(h +)的数量,这是改善催化性能的主要原因(O●-被认为有利于将乙烷完全氧化为二氧化碳)。在这些特别制备的混合氧化物催化剂中实现的高乙烯生产效率表明,固体研磨方法可作为制备掺杂的NiO基催化剂的通用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号