首页> 外文OA文献 >Fabrication of 3D Microfluidic Devices by Thermal Bonding of Thin Poly(methyl methacrylate) Films
【2h】

Fabrication of 3D Microfluidic Devices by Thermal Bonding of Thin Poly(methyl methacrylate) Films

机译:通过薄聚甲基丙烯酸甲酯薄膜的热粘合制备3D微流体器件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of thin-film techniques for the fabrication of microfluidic devices has gained attention over the last decade, particularly for three-dimensional channel structures.The reasons for this include effective use of chip volume, mechanical flexibility, dead volume reduction, enhanced design capabilities, integration of passive elements, and scalability. Several fabrication techniques have been adapted for use on thin films: laser ablation and hot embossing are popular for channel fabrication, and lamination is widely used for channel enclosure. However, none of the previous studies havebeen able to achieve a strong bond that is reliable under moderate positive pressures.The present work aims to develop a thin-film process that provides design versatility, speed, channel profile homogeneity, and the reliability that others fail to achieve.The three building blocks of the proposed baseline were fifty-micron poly(methylmethacrylate) thin films as substrates, channel patterning by laser ablation, and device assembly by thermal-fusion bonding. Channel fabrication was characterized and tuned to produce the desired dimensions and surface roughness. Thermal bonding was performed using an adapted mechanical testing device and optimized to produce the maximum bonding strength without significant channel deformation. Bonding multilayered devices, incorporating conduction lines, and integrating various types ofmembranes as passive elements demonstrated the versatility of the process. Finally, this baseline was used to fabricate a droplet generator and a DNA detection chip based on micro-bead agglomeration.It was found that a combination of low laser power and scanning speed produced channel surfaces with better uniformity than those obtained with higher values. In addition, the implemented bonding technique provided the process with the most reliablebond strength reported, so far, for thin-film microfluidics. Overall, the present work proved to be versatile, reliable, and fast, making it a good candidate to reproduce several on-chip functions. Future work includes implementing thick-substratebonding techniques to further improve the process and decrease energy requirements.
机译:在过去的十年中,使用薄膜技术制造微流体器件引起了人们的关注,特别是对于三维通道结构而言,其原因包括有效利用芯片体积,机械灵活性,减少死体积,增强设计能力,无源元素的集成和可伸缩性。几种制造技术已经适应用于薄膜:激光烧蚀和热压花在通道制造中很流行,而层压被广泛用于通道封闭。但是,以前的研究都没有一个能够在中等正压下实现可靠​​结合的牢固结合。本工作旨在开发一种薄膜工艺,该工艺可提供设计的多功能性,速度,通道轮廓的均匀性以及其他一些失败的可靠性。拟议基准的三个基本要素是:以五十微米的聚甲基丙烯酸甲酯薄膜为基底,通过激光烧蚀进行通道构图以及通过热熔结合进行器件组装。表征沟道制造并对其进行调谐以产生所需的尺寸和表面粗糙度。使用合适的机械测试设备进行热粘合,并进行优化以产生最大的粘合强度而不会出现明显的通道变形。结合多层器件,合并导线以及将各种类型的膜集成为无源元件证明了该工艺的多功能性。最终,该基线被用于制造基于微珠团聚的液滴产生器和DNA检测芯片,发现低激光功率和扫描速度的结合产生的通道表面比获得更高值的通道表面具有更好的均匀性。此外,已实施的键合技术为薄膜微流体提供了迄今为止报道的最可靠的键合强度。总的来说,目前的工作被证明是通用的,可靠的和快速的,使其成为重现多种片上功能的理想之选。未来的工作包括实施厚衬底键合技术,以进一步改善工艺并降低能耗。

著录项

  • 作者

    Perez Paul;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号