首页> 外文OA文献 >An Improved Wavelet‐Based Multivariable Fault Detection Scheme
【2h】

An Improved Wavelet‐Based Multivariable Fault Detection Scheme

机译:一种改进的基于小波的多变量故障检测方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)‐based Q and EWMA methods and MSPLS‐based Q method.
机译:从环境和工程过程中观察到的数据通常是嘈杂的并且与时间相关,这使得故障检测更加困难,因为噪声的存在降低了故障检测质量。使用小波的数据多尺度表示是一种功能强大的特征提取工具,非常适合对时间序列数据进行去噪和去相关。在本章中,我们将多尺度偏最小二乘(MSPLS)建模的优势与单变量EWMA(指数加权移动平均值)监控图的优势相结合,从而改进了故障检测系统,尤其是用于检测高度相关的小故障时,多变量数据。为此,我们将EWMA图应用于从MSPLS模型获得的输出残差。通过模拟蒸馏塔数据显示,与使用常规的基于偏最小二乘(PLS)的Q和EWMA方法以及基于MSPLS的Q方法相比,使用建议的方法可以显着改善故障检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号