首页> 外文OA文献 >ML-MG: Multi-label Learning with Missing Labels Using a Mixed Graph
【2h】

ML-MG: Multi-label Learning with Missing Labels Using a Mixed Graph

机译:ML-MG:使用混合图对缺少标签的多标签学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work focuses on the problem of multi-label learning with missing labels (MLML), which aims to label each test instance with multiple class labels given training instances that have an incomplete/partial set of these labels (i.e. some of their labels are missing). To handle missing labels, we propose a unified model of label dependencies by constructing a mixed graph, which jointly incorporates (i) instance-level similarity and class co-occurrence as undirected edges and (ii) semantic label hierarchy as directed edges. Unlike most MLML methods, We formulate this learning problem transductively as a convex quadratic matrix optimization problem that encourages training label consistency and encodes both types of label dependencies (i.e. undirected and directed edges) using quadratic terms and hard linear constraints. The alternating direction method of multipliers (ADMM) can be used to exactly and efficiently solve this problem. To evaluate our proposed method, we consider two popular applications (image and video annotation), where the label hierarchy can be derived from Wordnet. Experimental results show that our method achieves a significant improvement over state-of-the-art methods in performance and robustness to missing labels.
机译:这项工作着重于缺少标签的多标签学习(MLML)问题,该问题旨在在给定训练实例具有这些标签的不完整/部分集合的情况下,用多个类标签为每个测试实例添加标签(即缺少某些标签) )。为了处理丢失的标签,我们通过构造一个混合图来提出标签依赖关系的统一模型,该模型将(i)实例级相似度和类共现作为无向边,以及(ii)语义标签层次作为有向边。与大多数MLML方法不同,我们将学习问题转换为凸二次矩阵优化问题,以鼓励训练标签一致性,并使用二次项和硬线性约束对两种类型的标签依赖项(即无向边和有向边)进行编码。乘法器的交替方向方法(ADMM)可用于精确有效地解决此问题。为了评估我们提出的方法,我们考虑了两个流行的应用程序(图像和视频注释),其中标签层次结构可以从Wordnet派生。实验结果表明,相对于最新方法,我们的方法在性能和对丢失标签的鲁棒性方面均取得了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号