首页> 外文OA文献 >Construction of a Mean Square Error Adaptive Euler–Maruyama Method With Applications in Multilevel Monte Carlo
【2h】

Construction of a Mean Square Error Adaptive Euler–Maruyama Method With Applications in Multilevel Monte Carlo

机译:均方误差自适应Euler-Maruyama方法的构造及其在多层蒙特卡洛中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A formal mean square error expansion (MSE) is derived for Euler-Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise, a posteriori, adaptive time-stepping Euler-Maruyama algorithm for numerical solutions of SDE, and the resulting algorithm is incorporated into a multilevel Monte Carlo (MLMC) algorithm for weak approximations of SDE. This gives an efficient MSE adaptive MLMC algorithm for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC algorithm is shown to outperform the uniform time-stepping MLMC algorithm by orders of magnitude, producing output whose error with high probability is bounded by TOL > 0 at the near-optimal MLMC cost rate б(TOL log(TOL)) that is achieved when the cost of sample generation is б(1).
机译:对于随机微分方程(SDE)的Euler-Maruyama数值解,导出了形式均方误差展开(MSE)。误差扩展用于构造SDE数值解的路径,后验,自适应时间步长Euler-Maruyama算法,并将所得算法合并到SDE弱近似的多级蒙特卡洛(MLMC)算法中。这提供了一种有效的MSE自适应MLMC算法,用于处理许多低规则性近似问题。在低规则性数值示例问题中,开发出的自适应MLMC算法显示出比均匀时步MLMC算法好几个数量级,在接近最佳MLMC成本率的情况下,产生输出的可能性很高,误差被TOL> 0限制当样本生成成本为б(1)时实现的б(TOL log(TOL))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号